

Programme

https://gecat2024.sciencesconf.org/

Sponsors Platinum Nouvellesité Aquitaine nn dePoit TotalEnergies iers **Sponsors Gold** Courtage CAS Analyses Services **Bronkhorst**[®] micromeritics* **Sponsors Silver** INSTRUMENTS CHEMLYS Creative chromatography Equilabo INDUSTRIE High Pressure Technology REALCAT PLATFORM

	Mardi 14 mai	Mercredi 15 mai	Jeudi 16 mai	Vendredi 17 mai	
08:30		Conférence d'introduction	Conférence d'introduction		
09:00		Thème III : Marion CARRIER	Thème II : Philippe SERP	OII - 8 Y. Smati	
09:30		OIII - 1 H. Lilti	OII - 1 N. Bion	Oll - 9 T.J.R. Thurpu	
10:00		OIII - 2 N. Daridon	OII - 2 A. Sfeir	OII -10 F. Belgacem	
		OIII - 3 K. Larmier	OII - 3 A. Ben Attia	OII - 11 K. Patprom	
10:30		Pause	Pause	Pause	
11:00		OIII - 4 A. Issa	OII - 4 H. Duggal	OII - 12 A. Salichon	
11.20		OIII - 5 T. A. Chibane	OII - 5 O. Delaunay	OII - 13 C. Paris	
11:30		OIII - 6 C.A. Teles	Oll - 6 Y. Deng	Remise des prix	
12:00		OIII - 7 A. Guntida	OII - 7 S. Zafeiratos	Conclusions du congrès	
12:30 13:00		Repas	Repas	Distribution des paniers repas et départ	
13:30		Conférence d'introduction			
14:00		Thème I : David EDOUARD			
14:30		OI - 1 R. Mochel	Remise des Prix de la DivCat		
15:00		OI - 2 L. Reyes	DivCAt 😚		
		OI - 3 L. Goulart de A.			
15:30		Pause Pause			
16:00		OI - 4 X. Ji			
	Accueil	OI - 5 A. Djaafri			
16:30		OI - 6 C. Longue			
17:00		OI - 7 T. Lemaître			
17:30		Présentations des exposants	Sorties		
18:00	Introduction				
18:30					
19:00	Conférence d'ouverture Philippe BAZIN	Session de posters			
19:30	Cocktail de bienvenue				
20:00	Dîner	Dîner	Dîner de "Gala"		

Mardi 14 mai

- 15h00 Accueil des participants
- 18h00 Introduction
- 18h15 Conférence d'ouverture Philippe BAZIN Extraordinaire Outils de l'Ordinaire : Des manivelles à Portée de Main

19h15	Cocktail de bienvenue

19h45 Dîner

AutoChem III

A Catalyst Characterization Laboratory in a Single Analytical Instrument

THE FASTEST, SAFEST, AND MOST ACCUCRATE

system for chemisorption and temperature programmed reactions

Mercredi 15 mai

Thème III : Bioraffinerie et économie circulaire

08h30 Conférence d'introduction

Marion CARRIER

RAPSODEE, CNRS UMR 5203, Université de Toulouse, IMT Mines Albi, Campus Jarlard, 81013, Albi CT Cedex 09, France

Au cœur de la bioraffinerie thermochimique : les enjeux de la modélisation

09h30 Lignin Catalytic Depolymerization and Demethylation in one-pot reaction

Hugo LILTI¹, Christophe GEANTET¹, Dorothée LAURENTI¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

09h50 Fonctionnalisation de la biomasse lignocellulosique pour la fabrication de bio liants Nolwenn DARIDON¹, Christophe GEANTET¹, Dorothée LAURENTI¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

10h10 The conversion of fructose to 5-HMF catalyzed by faujasite zeolites: reaction mechanism and activity-properties relationships

Yuna HAN¹, Gerhard PIRNGRUBER¹, Kim LARMIER¹

¹IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize, France

10h30 Pause

10h50 Controlling acido-basic properties of magnesium silicates: a tool to optimize the selectivity in the gamma-valerolactone ring-opening reaction

<u>Albert ISSA^{1,2}</u>, Thomas ONFROY¹, Guillaume LAUGEL¹, Jean-François HOCHEPIED², Hélène LAURON PERNOT¹

¹Laboratoire de Réactivité de Surface (LRS), CNRS, Sorbonne Université, Paris, France ²Unité de Chimie et Procédés (UCP), Ecole Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, Palaiseau, France.

11h10 Organocatalytic conversion of glycerol to glycerol carbonate using CO₂ and acetonitrile

Taha Amine CHIBANE^{1,2}, Raphaël MEREAU², Thierry TASSAING², Karine DE OLIVEIRA VIGIER¹ ¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

²Institut des Sciences Moléculaires (ISM), CNRS, Université Bordeaux, Talence, France

11h30 Optimization in the deoxygenation of m-cresol by creating Ni-Nb interfaces

Camila A. TELES¹, Carmen CIOTONEA², Sébastien ROYER³, Frédéric RICHARD¹

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

²Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), CNRS, Université du Littoral Côte d'Opale, Dunkerque, France

³Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

11h50 Développement d'un catalyseur Ti-SBA-15 de désulfuration oxydative pour la valorisation du biodiesel issu d'huiles alimentaires usagées

Adisak GUNTIDA¹, Françoise MAUGE¹, Juliana APARICIO², Karine THOMAS¹

¹Laboratoire Catalyse et Spectrochimie (LCS), CNRS, ENSICAEN, Caen, France ²DIELIX - Sarpi Veolia, 727 Rte du Hazay, 78520 Limay, France

Repas

Thème I : Catalyse et Génie chimique

13h30 Conférence d'introduction

David EDOUARD

Catalyse, Polymérisation, Procédés et Matériaux (CP2M), CNRS, CPE Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

Génie chimique et catalyse Hétérogène: Méthode, Investigations expérimentale et théorique, Innovations

14h30 Supercritical water gasification of vinasse: study effect of a heterogeneous catalyst

<u>Robin MOCHEL^{1,2}</u>, Hary DEMEY¹, Alban CHAPPAZ¹, Léa VILCOCQ², Laurent VEYRE², Pascal FONGARLAND²

¹ Laboratoire Réacteurs et Procédés (LRP), CEA, LITEN, DTCH, Grenoble Alpes University, Grenoble, France ²Catalyse, Polymérisation, Procédés et Matériaux (CP2M), CNRS, CPE Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

14h50 Black liquor valorization via reactive distillation and heterogeneous catalysis

Laura REYES¹, Clémence NIKITINE^{1,2}, Léa VILCOCQ¹, Pascal FONGARLAND¹

¹Catalyse, Polymérisation, Procédés et Matériaux (CP2M), CNRS, CPE Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

²IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize, France

15h10 Direct biogas cracking to green H₂ and carbon material by microwave heated catalytic fluidized bed reactor

Valentin L'HOSPITAL¹, <u>Leandro GOULART DE ARAUJO¹</u>, Yves SCHUURMAN¹, Nolven GUILHAUME¹, Marilena RADOIU², David FARRUSSENG¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

²Microwaves Technology Consulting, Axel'One Campus, 69100, Villeurbanne, France

15h30 Pause

15h50 Hydrogen storage in dibenzyltoluene via catalytic hydrogenation: in- depth compound analysis and kinetic study

Xiaolong JI^{1,2}, Essyllt LOUARN¹, Isabelle PITAULT², Valérie MEILLE¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

²Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

16h10 Couplage SSITKA-IR *step-scan* pour une analyse approfondie à haute résolution temporelle des mécanismes catalytiques de réaction

<u>Amira DJAAFRI¹</u>, Isabelle DE WAELE², Nassim BOUCHOUL¹, Mélissandre RICHARD¹, Christophe DUJARDIN¹

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

²Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement (LASIRE), CNRS, Université de Lille, Lille, France

16h30 Innovative bottom-up approach using biomass for the synthesis of hierarchical ZSM-5 zeolites applied to the MTO reaction

<u>Camille LONGUE^{1,2}</u>, Y. ZHANG¹, Q. ZHENG¹, Rogeria BINGRE¹, C.G. FLORES¹, A.V. SILVA³, Marcelo M. PEREIRA³, Ludovic PINARD², Benoît LOUIS¹

¹Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg, Strasbourg, France

²Laboratoire Catalyse et Spectrochimie (LCS), CNRS, ENSICAEN, Caen, France

³LACES, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos, 149, Ilha do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil

16h50 Unconventional coke make-up on zeolites after anisole disproportionation

<u>Thomas LEMAITRE¹</u>, Nathan PICHOT^{1,2,3}, Yannick POUILLOUX², Nourrdine CHAOUATI¹, Anthony DUFOUR³, and Ludovic PINARD¹

¹Laboratoire Catalyse et Spectrochimie (LCS), CNRS, ENSICAEN, Caen, France ²Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

³Laboratoire Réactions et Génie des Procédés (LRGP), CNRS, Université de Lorraine, Nancy, France

17h10 Présentations des exposants 18h30 Session posters 19h45 Dîner Image: Character of the poster of the

02

THT

Programmation en température, sensibilité augmentée : plus un échantillon ne résiste au Micro GC Fusion.

Une idée, un projet ? Retrouvez-nous sur www.chemlys.com

Equilabo

Autoclaves et réacteurs sous pression personnalisés pour la recherche en catalyse

Jeudi 16 mai

Thème II : Activation de petites molécules

08h30 Conférence d'introduction

Philippe SERP

Laboratoire de Chimie de Coordination (LCC), CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France

Attempts to regulate hydrogen spillover for improving catalytic performance in hydrogenation reactions

09h30 Synthèse de NH₃ à basse pression – Apport des mesures par échange isotopique

Nicolas BION¹, Samuel BOUCHET¹, Fabien CAN¹, Xavier COURTOIS¹

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

09h50 Effect of support on Mo nitride NPs for Nitrogen Activation

<u>Amanda SFEIR</u>¹, Camila A. TELES¹, Maya MARINOVA², Jean-Philippe DACQUIN¹, Said LAASSIRI³ Sébastien ROYER¹

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

²Institut Michel-Eugène Chevreul (IMEC), CNRS, INRA, Centrale Lille, Université de Lille, Université Artois, Lille, France

³Chemical & Biochemical Sciences, Green Process Engineering (CBS), Mohamed VI Polytechnic University, UM6P, Benguerir, Maroc

10h10 Réduction des NO_x par H₂ pour la dépollution des gaz d'échappement de moteurs à hydrogène Amira BEN ATTIA¹, Fabien CAN¹, Xavier COURTOIS¹

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

10h30 Pause

10h50 Selective catalytic reduction of NOx with a (NH₃+ H₂) mixture on silver-supported catalyst Hitesh DUGGAL^{1,2}, Fabien CAN¹, Xavier COURTOIS¹, Rénal BACKOV²

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

²Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux, Pessac, France

11h10 Upgrading N₂O for selective catalytic photo-oxidative processes

Oriane DELAUNAY¹, Audrey DENICOURT-NOWICKI¹, Alain ROUCOUX¹

¹Institut des Sciences Chimiques de Rennes (ISCR), CNRS, Université de Rennes, Ecole Nationale Supérieur de Chimie de Rennes, Rennes, France

11h30 Ni exsolution from (NiO)xZrO₂ for catalytic CO₂ methanation

Yuxin DENG¹, Hélène LAURON-PERNOT¹, Marco DATURI², Josefine SCHNEE¹

¹Laboratoire de Réactivité de Surface (LRS), CNRS, Sorbonne Université, Paris, France ²Laboratoire Catalyse et Spectrochimie (LCS), CNRS, ENSICAEN, Caen, France

11h50 Operando/in situ X-ray photoemission and absorption study of Ni-doped CeO₂ catalyst for CO₂ methanation reaction

Mathias BARREAU¹, Spyridon ZAFEIRATOS²

¹Laboratoire Catalyse et Spectrochimie (LCS), CNRS, ENSICAEN, Caen, France ²Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg, Strasbourg, France

	Repas
13h30	Remise des Prix DivCat
15h30	Pause
16h00	Sortie Abbadia (RDV devant l'accueil) Initiation à la palas (sur site) Temps libre (détente, plage)
19h45	Dîner de « Gala »

INNOVATION. Réactif et stable, éprouvé et précis

L'instrument innovant FLEXI-FLOW bénéficie des avantages d'un capteur à puce unique intégré et d'une technologie de by-pass éprouvée. Cet instrument compact est un concentré de rapidité et de précision, une étape est franchie dans la mesure et la régulation de débit massique.

- Multi-paramètres : débit, température et pression dans un seul et même instrument
- Connectivité simple et sécurisée via Bluetooth et application dédiée
- Précision optimisée avec une base de données de gaz embarquée et un calcul de conversion en temps réel
- Indication de l'état NAMUR pour un meilleur suivi de procédé
- Adaptable à de multiples conditions d'utilisation grâce à la large plage de mesure et de régulation

Scannez ce code pour plus d'informations

Vendredi 17 mai

Thème II : Activation de petites molécules (suite)

9h00 In situ transformation of Layered double hydroxide arrays into 2D Metal Organic Framework for oxygen evolution reaction

<u>Yakoub SMATI¹</u>, Mireille TURMINE¹, Vincent VIVIER¹, Julien REBOUL¹, Juliette BLANCHARD¹ ¹Laboratoire de Réactivité de Surface (LRS), CNRS, Sorbonne Université, Paris, France

9h20 Nanosecond pulse dielectric barrier discharge for dry reforming of CH₄

<u>Teja Vardhan Reddy THURPU^{1,2}</u>, Elodie FOURRE¹, Sylvie ROSSIGNOL², Catherine BATIOT DUPEYRAT¹

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France

²Institut de Recherche sur les Céramiques (IRCER), Limoges, France

09h40 Étude comparative des méthodes de synthèse pour les catalyseurs type pérovskite. Application au reformage à sec du méthane

Faicel BELGACEM¹, Raphaël SCHNEIDER¹, Jean-François PORTHA¹, Laurent FALK¹

¹Laboratoire Réactions et Génie des Procédés (LRGP), CNRS, Université de Lorraine, Nancy, France

10h00 Étude de la synthèse Fischer-Tropsch à partir d'un syngaz ex-biomasse et d'une source d'hydrogène renouvelable

<u>Kanthika PATPROM^{1,2}</u>, Carlotta PANZONE¹, Alban CHAPPAZ¹, Jean-Marc BORGARD³, Geneviève GEFFRAYE¹, Pascal FONGARLAND²

¹Laboratoire Réacteur et Procédés (LRP), CEA, LITEN, DTCH, Université Grenoble Alpes, Grenoble, France ²Catalyse, Polymérisation, Procédés et Matériaux (CP2M), CNRS, CPE Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

³Laboratoire de Modélisation, Thermodynamique et Thermochimie (LM2T), CEA, ISAS, DRMP, Université Paris Saclay, Paris, France

10h20 Pause

10h40 Oxyde-zeotype bifunctional catalysts efficient for the conversion of CO to light olefins

Antoine SALICHON¹, Pavel AFANASIEV¹, Stéphane LORIDANT¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

11h20 Mn-Co supportés par CeO₂ pour l'oxydation totale de mélange CO/COV

<u>Caroline PARIS</u>¹, Éric GENTY¹, François DEVRED², Pierre ELOY², Fanny HANON², Christophe POUPIN¹, Stéphane SIFFERT¹, Éric GAIGNEAUX², Renaud COUSIN¹

¹Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), CNRS, Université du Littoral Côte d'Opale, Dunkerque, France

²Institute of Condensed Matter and Nanosciences, Place Pasteur 1, L4.01.09, B-1348 Louvain-la-Neuve, Belgique

11h40Remise des prix « Meilleures présentations orales » et « Meilleurs posters »Conclusions du congrès

12h15 Distribution des paniers repas et départ

Session de posters

PI-1 Selective glucose oxidation to glucuronic acid using bimetallic catalysts: doping effect

Maher ELHALLAL¹, Vitaly V. ORDOMSKI¹, Mickael CAPRON¹

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

PI-2 Cascade de réactions en phase aqueuse : étude des synergies et antagonismes de systèmes catalytiques hybrides

Hector MOINE¹, Léa VILCOCQ¹, Régis PHILIPPE¹, Pascal FONGARLAND¹

¹Catalyse, Polymérisation, Procédés et Matériaux (CP2M), CNRS, CPE Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

PI-3 Enhancing direct deoxygenation of m-cresol by promoting small Ni nanoparticles supported on SBA-15 with Cu

<u>Roger DEPLAZES¹</u>, Camila ABREU TELES², Carmen CIOTONEA³, Frédéric RICHARD², Nadia CANILHO³, Sébastien ROYER¹

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

²Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), CNRS, Université de Poitiers, Poitiers, France ³Laboratoire Lorrain de Chimie Moléculaire (L2CM), CNRS, Université de Lorraine, France

PI-4 Préparation et caractérisation du catalyseur : nanoparticules du Rhodium supportées par CeO₂-La₂O₃ préparé dans une solution de [pyrrolidinium heptanoate] Application : production d'hydrogène par photo catalyse

Bachira SOUKHAL¹, Meriem ANOUTI¹, Aicha BENAMAR¹, Mohamed TRARI³

¹Laboratoire de matériaux et application à l'environnement Faculté de Chimie (USTHB), BP32, 16111, Alger, Algérie ²Laboratoire PCMB (EA 4244), équipe Chimie-physique des Interfaces et des Milieux Electrolytiques (CIME), Parc de Grandmont, 37200 Tours, France

³Laboratoire de Stockage et Valorisation des Energies Renouvelables Faculté de Chimie (USTHB), BP32, 16111, Alger, Algérie

PII-1 Activity of Composite-Based Electride Materials for Ammonia Synthesis

Aissam ADDOU^{1,2}, Said LAASIRI¹, Jean-Philippe DACQUIN², Sébastien ROYER²

¹Chemical & Biochemical Sciences, Green process Engineering (CBS), Mohammed VI polytechnic university, UM6P, 43150, Benguerir, Maroc

²Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

PII-2 Pérovskites La_{1-x}Sr_xTiO₃ dopées Fe et Ni pour la réduction catalytique sélective de NO par H₂

Lucas DIOT¹, Laurence RETAILLEAU¹, Sonia GIL¹, Philippe VERNOUX¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

PII-3 L'exsolution des particules de Ni présents dans les phyllosilicates, bonne ou mauvaise stratégie pour la réaction de méthanation ?

Manon GREGOIRE¹, Carmen CIOTONEA^{1,2}, Sébastien ROYER², Edmond ABI-AAD¹, Christophe POUPIN¹

¹Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), CNRS, Université du Littoral Côte d'Opale, Dunkerque, France

²Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

PII-4 Development of Perovskite based Oxygen Carriers for Hydrogen (H₂) Production via Chemical Looping Methane (CH₄) Reforming

Ganesh JABOTRA^{1,2}, Jean-Philippe DACQUIN¹, Axel LOFBERG¹, Sébastien ROYER¹, Sudhanshu SHARMA²

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

²Indian Institute of Technology Gandhinagar (IITGN), Gujarat, 382355, Palaj, India

PII-5 Influence des voies de préparation des oxydes mixtes NiMgAl sur leurs activités catalytiques en méthanation du CO₂

<u>Michel OBEID^{1,2,3}</u>, Christophe POUPIN¹, Samer AOUAD, Madona LABAKI, Josefine SCHNEE⁴, Eric GAIGNEAUX⁵, Edmond ABI AAD, François DELATTRE

¹Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), CNRS, Université du Littoral Côte d'Opale, Dunkerque, France

²Laboratoire de Chimie-Physique des matériaux (LCPM), Université Libanaise, Faculté des Sciences, Fanar, Liban, Liban ³Département de Chimie, Faculté des Arts et des Sciences, Université de Balamand, Liban

⁴Laboratoire de Réactivité de Surface (LRS), CNRS, Sorbonne Université, Paris, France

⁵Institut des Nanosciences et de la Matière Condensée, Université catholique de Louvain, Place Louis Pasteur, 1 – 1348 Louvain-la-Neuve, Belgique

PII-6 The road to new SOFC electrode materials by studying novel BaTiO₃-derived samples

<u>Valérie THEUNS¹</u>, Donovan LEDRU², Marie-Hélène CHAMBRIER², Aurélie ROLLE¹, Anne-Sophie MAMEDE¹, Héloïse TISSOT¹, Elise BERRIER¹

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Université de Lille, Villeneuve d'Ascq, France ²Unité de Catalyse et Chimie du solide (UCCS), CNRS, Université Arois, Lens, France

PII-7 Distribution of Pd on shaped metal oxides and its effect on the catalytic performance for the CO₂ methanation reaction

Zafeiria FRAGKOU TOPALOGLOU¹, Mathilde GUILPAIN², Damien BOURGEOIS³, Jean-Philippe DACQUIN¹, Sébastien ROYER¹

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

²Orano-CORP/IRD, Direction Innovation et R&D, F-92320 Châtillon, France

²Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, USTHB, BP32, El-Alia, 16111Bab- Ezzouar, Alger, Algérie ³Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier BP 17171, Marcoule, 30207 Bagnols-sur-Cèze, France

PIII-1 Catalyseurs à base de vanadium pour la dépolymérisation sélective de la lignine en synthons aromatiques

Elias EL RASSI^{1,2}, Sébastien ROYER¹, Abdellatif BARAKAT², Jérémy DHAINAUT¹, Abderrahim SOLHY²

¹Unité de Catalyse et Chimie du solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, Villeneuve d'Ascq, France

²Institut National de la Recherche Agronomique et de l'Environnement (INRAE), UMR IATE, Université de Montpellier, F-34000, France

PIII-2 Pérovskite à base de manganèse pour l'oxydation catalytique de polluants (CO, COV...)

Charf Eddine BOUNOUKTA¹, <u>Eric GENTY¹</u>, Christophe POUPIN¹, Carmen CIOTONEA¹, Fabrice CAZIER², Gontrand LEYSSENS³, Valérie TSCHAMBER³, Stéphane SIFFERT¹, Sébastien ROYER⁴, Renaud COUSIN¹

¹Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), CNRS, Université du Littoral Côte d'Opale, Dunkerque, France

²Centre Commun de Mesures, Université du Littoral Côté d'Opale, Dunkerque, France

³Laboratoire Gestion Risques Environnement, Université de Haute-Alsace, Mulhouse, France

⁴Unité de Catalyse et Chimie du solide (UCCS), CNRS, Université de Lille, Villeneuve d'Ascq, France

PIII-3 Valorization of waste biomass flows for preparation of novel biosourced CO₂ sorbents

<u>Aliénor BEUCHAT¹</u>, Murad MALIKZADE¹, Ksenia PARKHOMENKO¹, Claire COURSON¹, Dominique BEGIN¹, Marine GUILMONT², Benedicte RETY², Zakaria NADIF², Roger GADIOU², Nicolas THEVENIN³, Lionel RUIDAVETS³

¹Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg, Strasbourg, France

²Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université Haute-Alsace, Mulhouse, France ³RITTMO Agroenvironnement[®], Colmar, France

PIII-4 Stockage d'hydrogène dans des diols biosourçables

Valérie MEILLE¹, Elias AL-AHMAR¹, Augustin MANEL², Étienne AIRIAU², Catherine PINEL¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

²Activation, 10, rue Jacquard, 69680 CHASSIEU, France

PIII-5 Effect of bifunctional catalysts in enhancing the stability of bio-oil during pyrolysis under H_2 atmospheric pressure

<u>Katy NESPOULOUS¹</u>, William DE REZENDE LOCATEL¹, Chetna MOHABEER¹, Nuno BATALHA¹, Dorothée LAURENTI¹, Nolven GUILHAUME¹, Yves SCHUURMAN¹

¹Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

PIII-6 Etude statistique de la cinétique de transformation du glucose issu de la biomasse en glycols

Marie-Line ZANOTA¹, Isaline BONNIN¹, Franck RATABOUL², Noémie PERRET², Léa VILCOCQ¹

¹Catalyse, Polymérisation, Procédés et Matériaux (CP2M), CNRS, CPE Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

²Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France

PIII-7 Biochar-based catalysts for methane reforming

<u>Murad MALIKZADE¹</u>, Ksenia PARKHOMENKO¹, Aliénor BEUCHAT¹, Claire COURSON¹, Dominique BEGIN¹, Marine GUILMONT², Benedicte RETY², Zakaria NADIF², Roger GADIOU², Nicolas THEVENIN³, Lionel RUIDAVETS³

¹Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg, Strasbourg, France

²Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université Haute-Alsace, Mulhouse, France ³RITTMO Agroenvironnement[®], Colmar, France

Partenaires institutionnels

IFP Energies nouvelles (IFPEN) est un acteur majeur de la recherche et de la formation dans les domaines de l'énergie, du transport et de l'environnement. Depuis les concepts scientifiques en recherche fondamentale jusqu'aux solutions technologiques en recherche appliquée, l'innovation est au cœur de son action, articulée autour de quatre orientations stratégiques : climat, environnement et économie circulaire ; énergies renouvelables ; mobilité durable ; hydrocarbures responsables.

Au sein d'IFPEN, la direction Catalyse, Biocatalyse et Séparation regroupe les compétences et les outils IFPEN nécessaires à la conception et au développement d'agents catalytiques, biocatalytiques et de séparations dans les domaines du traitement du gaz naturel et biogaz, du raffinage et du bio-raffinage, de la pétrochimie et de la synthèse d'intermédiaires chimiques à partir de ressources renouvelables.

L'Institut de Recherche sur la Catalyse et l'Environnement de Lyon (UMR5256) est une unité de recherche conjointe du Centre National de la Recherche Scientifique (CNRS) et de l'Université Claude Bernard Lyon 1 (UCBL). L'IRCELYON s'intéresse à des questions sociétales essentielles telles que la qualité de l'air, le changement climatique, la prévention de la pollution, la chimie durable et la production d'énergie. Pionnier de la catalyse hétérogène, l'Institut rassemble un savoir-faire exceptionnel pour le développement de nouveaux catalyseurs, de leur synthèse à leurs applications, en s'appuyant sur une instrumentation de pointe rassemblée au sein de la plateforme IRCATECH. Les recherches de l'Institut s'inscrivent dans le cadre de plusieurs

Ainsi, l'IRCELYON construit un environnement de recherche unique, abordant de nouvelles percées scientifiques et défiant les frontières actuelles dans le domaine de la catalyse et de la recherche environnementale. Notre expertise couvre la conception de matériaux ayant des propriétés avancées, la caractérisation complète des matériaux catalytiques et des milieux réactionnels, le développement de la catalyse non conventionnelle, couvrant des applications allant des molécules modèles aux matières premières réelles.

L'Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) est une unité de recherche de l'Université du Littoral Côte d'Opale (ULCO). Elle compte plus de 65 membres dont 38 personnels permanents. C'est une unité pluridisciplinaire qui développe une recherche fondamentale et appliquée dans les domaines de l'environnement, le développement durable et l'énergie. Ses thématiques de recherche concernent la détection et la caractérisation des contaminants de l'air et du sol, l'évaluation de leurs effets sur l'environnement et le vivant, la proposition de moyens de remédiation et la valorisation de la bio-ressource. L'unité est structurée en quatre équipes, Chimie et Toxicologie des Émissions Atmosphériques (CTEA), Interactions Plantes-Champignons et Remédiation (IPCR), Chimie Supramoléculaire (CS) et Traitement Catalytique et Énergie Propre (TCEP). L'activité de l'équipe TCEP impliquée dans le GeCat, concerne la catalyse hétérogène appliquée à l'environnement et à l'énergie. Elle s'intéresse plus particulièrement au traitement catalytique de polluants atmosphériques (oxydation des COV, réduction des NOx,...) et à la valorisation énergétique (production d'hydrogène, méthanation, valorisation du biogaz) par voie catalytique.

Ircelyon objectifs de développement durable.

Unité de Chimie Enviro

18th ICC • LYON 2024

JULY 14 - 19, 2024

Ш

International Congress on Catalysis LYON • FRANCE

Conférences plénières

Attempts to regulate hydrogen spillover for improving catalytic

performance in hydrogenation reactions

Philippe Serp

LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France

Hydrogen spillover (H-spillover) is the surface migration of activated hydrogen atoms from a metallic particle, on which they are generated, onto a support (Figure 1). The phenomenon has been widely studied because of its implication for catalytic reactions involving hydrogen and hydrogen storage.^[1] The H-spillover mechanism consists of several steps. In the first one, molecular hydrogen is activated and dissociated on a transition-metal particle in close contact with the support. Secondly, the migration of H species from the metal particles to the support should occur. This step is highly dependent on the nature of metal and support (reducible vs non-reducible oxides, carbon materials). The last two steps consist in the surface diffusion and recombination of H species on the support surface. The nature of the H-species, and the efficiency and spatial extent of H-spillover strongly depend on the nature of the support (reducible vs non-reducible oxides or carbon materials). The H-species can not only participate in catalytic reactions as reactants, but also induce support or metallic phase modifications. Different strategies have been proposed to enhance the H-spillover, thus significantly accelerating the catalytic performance.

Figure 1. Fate of H species resulting from H-spillover during catalysis

Here, we will: i) discuss the case of reducible oxide supports and carbon materials, ii) we will present different strategies for modulating the H-spillover, and iii) we will evaluate the impact of this regulation on the catalytic performance for CO_2 hydrogenation (methanation and direct CO_2 -FTS) and for alkene hydrogenation.^[2-4] The important message to take away from this presentation is that it is important to regulate H-spillover and not just increase it, as too much H-spillover can be detrimental to catalytic performance.

[1] M Li, W. Yin, J. Pan, Y. Zhu, N. Sun, X. Zhang, Y. Wan, Z. Luo, L. Yi, L. Wang, Chem. Eng. J. 471 (2023) 144691.

[2] D. Messou, V. Bernardin, F. Meunier, M. Borges Ordoño, A. Urakawa, B. F. Machado, V. Collière, R. Philippe, P. Serp, C. Le Berre, J. Catal. 398 (2021) 14-28.

[3] C. Scarfiello, K. Soulantica, S. Cayez, A. Durupt, G. Viau, N. Le Breton, A. K. Boudalis, F. Meunier, G. Clet, M. Barreau, D. Salusso, S. Zafeiratos, D. Pham Minh, P. Serp, 428 (2023) 115202.

[4] L. Vanoye, B. Guicheret, C. Rivera-Cárcamo, J. Audevard, J. Navarro-Ruiz, I. del Rosal, I. C. Gerber, C. H. Campos, B. F. Machado, J. Volkman, R. Philippe, P. Serp, A. Favre-Réguillon, J. Catal. 424 (2023) 173-188.

Au cœur de la bioraffinerie thermochimique : les enjeux de la

modélisation

Marion Carrier

RAPSODEE, CNRS UMR 5203, Université de Toulouse, IMT Mines Albi, Campus Jarlard, 81013, Albi CT Cedex 09, France

A l'heure où l'on se questionne si la 'transition' (préférer baisse de l'intensité Carbone dans le contexte actuel) a lieu ou aura lieu, la communauté scientifique s'engage dans des réflexions et investigations autour du concept de bioraffinerie de seconde génération. Reprenant les grandes lignes de valorisation papetière, l'une des bioraffineries historiques, ou empruntant des technologies à l'industrie pétrolière, cette conférence évoquera quelques enjeux de modélisation au cœur d'une bioraffinerie lignocellulosique et thermochimique. Le contenu reposera sur les travaux les plus récents issus du projet Make Our Planet Great Again (MOPGA) intitulé Pyrokine (ANR-18-MPGA-0013).

Communications orales

Thème : Catalyse et Génie chimique

Supercritical water gasification of vinasse: study effect of a heterogeneous catalyst

<u>Robin MOCHEL^{1,2}</u>, Hary DEMEY¹, Alban CHAPPAZ¹, Léa VILCOCQ², Laurent VEYRE², Pascal FONGARLAND²

¹ CEA, LITEN, DTCH, Laboratoire Réacteurs et Procédés (LRP), Grenoble Alpes University, F-38000 Grenoble, France

² CP2M, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, 69100 Villeurbanne, France

Supercritical water gasification (SCWG) is a thermochemical process involving water at its supercritical state (T>374 °C ; P> 22.1 MPa) yielding mainly gaseous species (H₂, CH₄, CO₂,...) in short reaction time [1]. It is particularly adapted to wet feedstock like sugar beet vinasse, using its water content as both a solvent and a reagent. SCWG is commonly operated at high temperature (>600 °C) to ensure higher gas yields, but the use of a catalyst allows to decrease the process temperature (<450 °C) with significant yields [1-2]. If catalytic SCWG has high interest in waste biomass valorization production, there are still different challenges remaining. First, the biomass selected in this work (sugar beet vinasse, i.e. liquid effluent after sugar fermentation and ethanol distillation) is known to contain some remaining organics and inorganic compounds. Presence of some inorganic species like potassium is known to have some catalytic properties and may have interaction with solid catalysts. A better understanding of the effect of this species is then expected. Secondly, the use of a heterogeneous catalyst is a huge challenge in such severe conditions. Our objective was then to develop supported Nickel-based catalyst starting from a classical Raney Nickel as reference.

Catalytic SCWG experiments were performed in a batch reactor containging vinasse (14-16 % dry matter) and nickel catalyst. The variation of catalyst loading highlights the catalyst contribution to gasification reactions. H_2 , CH_4 and CO_2 species were observed in various proportion depending on catalyst loading. Right side figure shows a large improvement in CH₄ yield (from 1.69 to 11.02 mol/kg of dry matter) by comparing non-catalytic and highest catalyst loading tests, with a global carbon gas yield reaching 69.6%. At low catalyst loading, H_2 yield is improved whereas CH_4 yield is improved at higher catalyst loadings. It suggests that the catalyst firstly contributes

Vinasse SCWG (450 °C ; 30 min) gas yields with different catalyst loading (horizontal lines representing thermodynamics calculations)

to steam reforming reactions to produce H₂ and CO₂. A higher catalyst loading may overproduce these two gases, which further recombine into CH₄ by Sabatier's reaction.

Novel catalysts were prepared considering SCWG process characteristics. The aims of these catalysts were: i) to combine stable material in supercritical water (SCW) conditions; ii) to improve the dispersion/availability of metal free active phase and iii) to have an ergonomic design in order to enhance its management in our reactor. The SCWG experiments showed promising results with nickel-based catalysts. Hence, nickel-supported catalyst on metal oxide pellets were synthesized. According to the literature, these supports exhibit high stability in SCW [3]. Different supports were tested in this work: TiO₂ (anatase), ZrO₂

(monoclinic), ZrO_2 -TiO₂ (monoclinic - anatase) and Al_2O_3 (θ and α coexisting ^{EDS image of 10%Ni/Al₂O₃ phases). Ongoing work consists in stability tests in SCW and efficiency evaluation in SCWG to keep the appropriate catalyst for further catalytic SCWG study.}

[1] Demey, H et al., Energies 2023, 16 (8), 3343.

[2] Okolie, J. A. et al., Sustain. Energy Fuels 2019, 3 (3), 578-598.

[3] Jocz et al., Chem. Mater. 2018, 30 (4), 1218-1229

Valorisation de la liqueur noire par distillation réactive et catalyse hétérogène

Laura Reyes,¹ Clémence Nikitine,^{1,2} Léa Vilcocq¹ and Pascal Fongarland¹

¹CP2M, UMR 5128, UCBL1, CNRS, CPE Lyon, Villeurbanne, France

² IFP Energies Nouvelles, Solaize France

Les acides carboxyliques sont des molécules essentielles et des matières premières pour la synthèse de produits pharmaceutiques, solvants et de polymères; cependant leur synthèse/obtention dépend fortement des produits dérivés de la pétrochimie. Dans le cadre d'une économie plus durable, une source alternative est la récupération des acides carboxyliques présents dans la liqueur noire (Black liquor BL) [1]. La BL est un sous-produit de la production de pâte à papier qui contient un pourcentage important d'acides carboxyliques en matière sèche (≈30%). À l'échelle du laboratoire, de nombreuses approches ont été étudiées pour récupérer les acides du BL, la distillation réactive (RD) étant l'une des techniques de récupération les plus prometteuses.[2-3] La RD permet de séparer les acides thermodégradables et/ou à faible point d'ébullition en les transformant dans leurs esters respectifs. L'objectif principal de cette étude est de développer une voie de valorisation des BL pour récupérer les acides carboxyliques par RD couplée avec catalyse hétérogène.

En raison de la complexité de la composition et des caractéristiques physicochimiques de la BL, un procédé de raffinage est nécessaire avant d'entrer dans la colonne de RD. Basé sur la bibliographie et des expériences de laboratoire, un prétraitement a été développé et appliqué au Kraft BL industriel (Fig. 1).

Figure 1. Schéma de la valorisation des BL par RD hétérogène

Les études RD expérimentales ont été réalisées dans une colonne de laboratoire à 3 étages, d'un diamètre interne de 32 mm, avec une hauteur de garnissage maximale de 15 cm et un boiler de 700 ml. Pour améliorer la réactivité, 2 sections de la colonne ont été remplies de mousses d'aluminium (Open cell foams) de 10 ppi recouvertes de TiO₂-WO_x comme catalyseur. Ces structures actives avec une charge catalytique de 171±29 kg_{catalyseur}.m⁻³_{support} et une fraction de vide proche de 0,8 ont été précédemment identifiées comme des matériaux de garnissage prometteurs pour les réactions d'estérification.[4] Le test de RD a été effectué à pression atmosphérique, avec un débit d'alimentation de 0,09 kg.h⁻¹ (2-ème étage) et un reflux de 0,5. En régime permanent, une conversion de 21 % de l'acide glycolique et de 28 % de l'acide lactique a été obtenue et leurs esters éthyliques respectifs ont été identifiés de manière satisfaisante en tant que produits. Par conséquent, cette étude a permis d'obtenir une preuve de concept de la production d'esters éthyliques dans un système RD continu à partir de BL, ce qui à notre connaissance, n'a pas encore été documenté dans la littérature.

 S. Hellstén, J. Lahti, J. Heinonen, M. Kallioinen, M. Mänttäri, and T. Sainio. (2013). Chem. Eng. Res. Des., 91, 12, pp. 2765–2774

[2] L. Reyes, C. Nikitine, L. Vilcocq, and P. Fongarland, (2020) Green Chem., 22, 23, 8097–8115.

[3] H. Kumar and R. Alén. (2015) Sep. Purif. Technol., 142, pp. 293–298.

[4] L. Reyes, L. Vilcocq, M-L Zanota, V. Meille, C. Nikitine, P. Fongarland. (2023), ChemCatChem, 15,1-8.

Direct biogas cracking to green H₂ and carbon material by microwave heated catalytic fluidized bed reactor

<u>Valentin L'hospital</u>¹, Leandro Goulart de Araujo¹, Yves Schuurman¹, Nolven Guilhaume¹, Marilena Radoiu², David Farrusseng¹

¹IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR5256 CNRS-Université de Lyon, 69626 Villeurbanne, France ²Microwaves Technology Consulting, Axel'One Campus, 69100, Villeurbanne, France

CH₄ catalytic cracking can produce CO₂-free hydrogen as the carbon is stored in solid form[1].

Here we investigate the direct biogas catalytic cracking as a negative carbon emission technology, as the carbon source comes from biomass and the carbon is captured in a solid form, preventing greenhouse gas emissions. This approach faces several challenges, (i) the reaction is highly heat transport limited due to the endothermicity of the cracking and dry reforming reactions, (ii) catalyst stability at high temperature (T>900°C), (iii) the Boudouard reaction which can convert the solid carbon to CO. While methane conversion with stoichiometric or excess of CO_2 (Dry Reforming) is well known[2], direct methane conversion in the absence of CO_2 (Cracking) has been little addressed.

The objective of this work is to investigate the direct biogas catalytic cracking by microwave (MW) heating in a

fluidized bed reactor in order to overcome heat transfer limitations and achieve high CH₄ conversion. We will show the development of an iron-based catalyst that (i) can be efficiently heated by MW, (ii) is active and stable at high temperature (T>900°C), (iii) is fluidizable.

specially developped iron-based А catalyst (Fig. 1) show good activity and stability over several hours on stream. Below 850 °C (Fig. 2), the carbon balance is above 100%, indicating that the carbon previously formed on the catalyst is gasified to CO by the Boudouard reaction $(C_{(s)}+CO_{2(q)}\rightarrow 2CO_{(q)})$. In contrast, at higher temperatures (> 850°C), the carbon balance is below 100%, indicating that solid carbon is produced and stored and that the methane cracking reaction $(CH_{4(g)} \rightarrow C_{(s)} + 2H_{2(g)})$ produces more carbon deposit than the Boudouard gazeifications. Whereas Biogas cracking reaction in fluidized bed reactor has been achieved using conventional heating, the fluidization and thermal homogneity are very chalenging in using a MW

Figure 1 a) Microwave heated catalytic fluidized bed reactor with Iron-based catalyst at 950°C, b) IR-thermal image of the reactor

Figure 2 Carbon balance for catalytic biogas cracking in a fluidized bed with iron-based catalyst. N₂:CH₄:CO₂ (4.5:2:1) 250 mL min⁻¹, 1 bar. Carbon balance values above 100% indicate carbon loss from the catalyst, values below 100% indicate an accumulation of solid carbon

heating technology. Indeed, the fluidization depends in part of the temperature and the MW heating depends on the dispersion of the particles in the reactor.

Catalytic biogas cracking in a fluidized bed can achieve very high methane conversion (>90%) into hydrogen and solid carbon. Equally important, the output stream is a mixture of H_2 and CO in a ratio of 2:1, an ideal ratio for Fisher-Tropsch synthesis. We will show the prons and cons of MW heating in a fluidized reactor.

[1] N. Sánchez-Bastardo, R. Schlögl, H. Ruland, *Ind. Eng. Chem. Res.* **2021**, *60*, 11855–11881.

[2] M.S. Lim, Y.N. Chun, *Energy and Fuels*, **2017**, *31*, 13761–13768.

We thank the European Union for supporting TITAN program under GA N° 101069474. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the EU. Neither the EU nor the granting authority can be held responsible for them.

Hydrogen storage in dibenzyltoluene via catalytic hydrogenation: in-

depth compound analysis and kinetic study

Xiaolong Ji,^{1,2} Essyllt Louarn¹, Isabelle Pitault², Valérie Meille¹

¹IRCELYON, Université Claude Bernard Lyon 1, 69626, Villeurbanne, France. ²LAGEPP, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France

The storage of hydrogen is one of the major challenges in hydrogen processes. Hydrogen can be efficiently stored in LOHCs (Liquid Organic Hydrogen Carriers) through catalytic hydrogenation, and the release of hydrogen is typically reached via the dehydrogenation of their H₂-rich form. The mixture of dibenzyltoluene (H0-DBT) isomers could be valued for its high storage capacity and large liquid phase temperature range but a deeper understanding of isomers in the mixture and their kinetics of H₂ storage are not present in the literature which are crucial for the reactor and process design. In this study, the identification of Hx-DBT isomers was achieved with the help of GC/MS. It has been found that the commercial mixture has not only 75 wt-% of H0-DBT but also 25 wt-% of benzylbenzyltoluene (H0-BBT). Kinetic studies have been carried out using commercial Pt/Al₂O₃ and Pt/C catalysts in a batch reactor. Different Pt/DBT ratio were tested in the temperature range of 85 - 250 °C under 20 - 50 bar of H₂ with a stirring speed of 800 - 1200 rpm. The reaction was monitored by (i) liquid phase sampling analyzed by 2 GCs equipped with different columns, allowing the establishment of mass balances over Hx-DBT and possible side products and (ii) recording the pressure drop in the hydrogen container upstream of the reactor every second. Kinetic models taking transfer limitations and catalyst deactivation into consideration have been established for each Hx-DBT family and all H0-DBT isomers. Parameter estimation was performed using non-linear optimization routines minimizing the difference between the simulated and experimental results in Python, calculating intrinsic rate constants k_i, adsorption coefficients K, internal transfer efficiency η_i , gas-liquid transfer coefficient k_La and liquid-solid transfer coefficient k_D as shown in Figure 1. It was found that there was a 0.005 mol-% poison in the commercial mixture which could nullify some of the catalyst at the beginning of the reaction. Unlike Pt/Al₂O₃. Pt/C catalyst was found subject to deep deactivation at temperatures above 200°C. However, Pt/C showed much better activity at temperatures below 200 °C. Low temperature hydrogenation was favored by thermodynamics and allowed the total conversion towards H18-DBT with no residue of H12-DBT contrary to high temperature processes reported in the literature [2].

Figure 1: Simulated profiles and experimental points of Left) Hx-DBT family concentration and Right) H₂ pressure in the reservoir during a reaction of H0-DBT hydrogenation with 5 % Pt/C at 150 °C, 30 bar H₂, 1000 rpm

[1] G. Do et al., React. Chem. Eng., 2016, 1, 313
[2] H. Jorschick et al. Energy Environ. Sci., 2017, 10, 1652

Couplage SSITKA-IR *step-scan* pour une analyse approfondie à haute résolution temporelle des mécanismes catalytiques de réaction.

Amira Djaafri¹, Isabelle De Waele², Nassim Bouchoul¹, Mélissandre Richard¹, Christophe Dujardin¹

¹Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

²Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F59000, Lille, France

Résumé

L'étude des mécanismes de réactions en catalyse hétérogène à une échelle temporelle fine a toujours constitué un défi pour les scientifiques. Il est donc nécessaire de développer de nouvelles méthodes capables d'élucider ces mécanismes de réaction, fournissant des informations détaillées sur les étapes élémentaires les plus rapides. Dans ce travail de recherche, nous proposons une approche novatrice en combinant l'analyse *SSITKA (Steady-State Isotopic Transient Kinetic Analysis)* avec la spectroscopie infrarouge (IR) *operando* résolue dans le temps en mode rapid- et step-scan. La particularité de cette étude consiste à remplacer l'impulsion laser utilisée dans le mode IR step-scan, par une perturbation chimique d'échange isotopique au cours de la réaction.

La faisabilité de cette combinaison a été démontrée en appliquant cette méthodologie à la réaction d'oxydation du CO sur un catalyseur Pt/Al₂O₃. Les premiers tests SSITKA-IR step scan ont été effectués à 110 °C en utilisant alternativement sur une période de 4 secondes : 2 s 2000 ppm¹²CO/10%O₂/He – 2 s 2000 ppm¹³CO/10%O₂/Kr/CH₄/He. Après un délai permettant d'atteindre un état stable de la surface catalytique (100 permutations ¹²CO/¹³CO), les données IR ont été collectées entre 3800 et 800 cm⁻¹ en utilisant une résolution spectrale de 4 cm⁻¹. Des résolutions temporelles de 122 ms et 2 ms ont été sélectionnées pour les modes rapid-scan et step-scan, respectivement. Lors de l'oxydation de CO sur Pt/Al₂O₃, nous observons la présence d'une bande à 2040 cm⁻¹ caractéristique de la formation d'espèces carbonyles adsorbées linéairement à la surface des particules de Pt [1]. Les spectres IR après soustraction illustrant l'évolution des espèces carbonyles adsorbées linéairement sur Pt pendant les 122 premières ms de l'échange ¹³CO→¹²CO,

sont présentés sur la Figure 1. Des spectres similaires ont été obtenus après 122 ms pour les 2 modes de travail IR. Ces résultats démontrent clairement la capacité de la technique à observer les premiers moments de l'échange isotopique.

Il est alors possible d'augmenter encore la résolution temporelle (µs) pour observer des mécanismes catalytiques hétérogènes plus rapides. Par exemple, Thibault-Starzyk et al. ont révélé la présence d'espèce intermédiaire de courte durée de vie lors de la réduction de NO par le CO sur des catalyseurs Ag/Al₂O₃, en utilisant la méthode IR step scan [2]. Cette espèce apparaît à 2205 cm⁻¹ suite au « basculement » (flip) d'un groupement cyanure adsorbé sur Ag (2130 cm⁻¹) sur l'alumine pour former des espèces isocyanates à 2240 et 2265 cm⁻¹. Notre objectif est alors de démontrer le potentiel de la méthode SSITKA/IR step-scan

Figure 1 : Spectres après soustraction lors des 122 premières ms de l'échange ¹³CO→¹²CO pendant l'oxydation de CO sur Pt/Al₂O₃ en mode rapid-scan (ligne pointillée noire) et step-scan (lignes rouges à bleues).

nouvellement développée en observant les mécanismes d'activation de petites molécules (CO, CO₂, CO+NO,...) et de formation d'espèces intermédiaires (isocyanates, carbonates, formiates, ...) lors des réactions catalytiques à une échelle temporelle très rapide.

[1] I . Hatoum et al. Top. Catal. 66 (2022) 1–7. DOI

[2] F. Thibault-Starzyk et al. Science. 324 (2009) 1048– 1051. DOI

Innovative bottom-up approach using biomass for the synthesis of hierarchical ZSM-5 zeolites applied to the MTO reaction

<u>C. Longue</u>^{1,2}, Y. Zhang¹, Q. Zheng¹, R. Bingre¹, C.G. Flores¹, A.V. Silva³, M.M. Pereira³, L. Pinard², B. Louis¹.

¹Institute of Chemistry and Processes for Energy, Environment and Health, ICPEES, UMR 7515, CNRS-University of Strasbourg, 25, rue Becquerel, F-67087 Strasbourg Cedex 02, France ²ENSICAEN - Laboratoire Catalyse & Spectrochimie – LCS, 6, Boulevard Maréchal Juin, F-14050 Caen Cedex 4, France

³LACES, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos, 149, Ilha do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil

The methanol-olefins (MTO) reaction converts methanol into light olefins, mainly ethylene and propylene, and high-value chemicals such as light aromatics [1]. Zeolites, in particular H-ZSM-5, have been widely used as catalysts in petrochemicals and fine chemicals due to their shape selectivity, adjustable acidity and high thermal and chemical stability [2]. However, the microporous structure of zeolite also hinders its applications in reactions involving large molecules of reactants or products due to restricted diffusion [3]. One effective way of avoiding this phenomenon is to introduce mesopores. Much effort has been devoted to the synthesis of hierarchical zeolites by introducing mesopores and/or macropores into the zeolite pore structure [4]. In the present communication, we would like to present our recent findings on the synthesis of ZSM-5 by a bottom-up approach using biomass, in particular sugarcane bagasse and lignin.

H-ZSM-5 zeolites were prepared by the hydrothermal synthesis method. The initial composition of the synthesis gel was 1 NaAlO₂ : 5 NaCl : 4 TPAOH : 14 TEOS : 1038 H₂O. From this gel, three samples were synthesized (i) directly the reference designated (**R**) or by adding either (ii) 600 mg of lignin (**L**) or (iii) an equimassic mixture of lignin/sugar (300 mg/300 mg) (**L+B**).

Figure 1 shows the methanol (+ dimethylether) conversion as a function of time-on-stream and the product yields obtained after 4 hours of reaction. Light olefins ($C_2^=$, $C_3^=$ and $C_4^=$) are the main products at 450°C.

Figure 1 : (a) Methanol (MeOH) and dimethylether (DME) conversion as a function of time-on-stream (TOS) and (b) mass yields of ethylene, propylene, butenes, C_5 and C_6^+ products during the MTO tests after 4 hours of reaction (WHSV = 2.1 g_{MeOH} g_{cat}⁻¹ h⁻¹).

The addition of lignin during hydrothermal synthesis (L) increases the stability of the catalyst despite the absence of mesopore formation. However, the addition of a mixture of lignin and sugarcane bagasse (L+B) gives the same catalyst lifetime as the zeolite synthesized without the addition of organic molecules (R). In terms of selectivity, the presence of bagasse in the synthesis gel promotes propylene yields, while the presence of lignin promotes the oligomerization reaction, giving a high C_6^+ yield.

A bottom-up approach using biomass for the synthesis of ZSM-5 zeolites has a limited effect on acidity and textural properties in comparison with conventional synthesis, i.e. without the addition of organic macromolecules. In spite of this, the presence of lignin or lignin and sugarcane bagasse does improve the catalyst lifetime or the propylene productivity in the MTO process.

- [1] S. Ren, X. Feng, Chin. J. Chem. Eng., 46 (2022) 134–141.
- [2] J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensen, J.C. Groen, Chem. Soc. Rev., 37 (2008) 2530–2542.
- [3] S. Li, J. Li, M. Dong, S. Fan, T. Zhao, J. Wang, W. Fan, Chem. Soc. Rev., 48 (2019) 885–907.
- [4] Q. Zheng, B. Louis, ChemCatChem, 15 (2023) e202300210.

disproportionation.

N. Pichot^{1,2,3}, <u>T. Lemaitre</u>³, N. Chaouati³, Y. Pouilloux¹, A. Dufour², L. Pinard³ ¹ *IC2MP, UMR 7285, Poitiers, France.*

²LRGP, UMR 7274, Nancy, France.

³LCS, UMR 6506, Caen, France.

Figure 1: (a) Main coke components on different zeolite structures and acidities; (b) Inhibition of the paring mechanism by the hydroxyl group

Anisole disproportionation is a model reaction for the of catalytic study fast pyrolysis of lignocellulosic biomass, for the production high value of aromatic hydrocarbons (benzene, toluene. xylenes). The hurdle major to commercialisation of this process is the catalyst deactivation. Previous work on anisole disproportionation on MFI zeolites showed a steadystate activity was achieved after a short time, and that it was caused by the nature of deactivating species, the being methylated phenolics, i.e. the main reaction products: (CH3)x-Phenol, with 0 < x < 4 [1]. No polyaromatics were found after extraction of the coke species. which was

after extraction of the coke species, which was ascribed to the steric hindrance of the 10-MR channels in MFI.

In the present study, anisole disproportionation was carried out on 12-MR zeolites in addition to the previous MFI. Again, no polyaromatic coke was found after extraction, instead the previously mentioned methylphenols were found, with higher selectivities than previously for the pentamethylphenol, due to the lower steric constraints in the 12-MR zeolites (**Figure 1a**). The unusual absence of polyaromatic species in the coke extract can be explained by the inhibition of the paring mechanism[2], usually found in hydrocarbon transformation processes, by the electronic effects induced by the hydroxyl group of the phenolics (**Figure 1b**).

[1] N. Pichot, J.W. Hounfodji, et al. Appl. Catal. A, 665, (2023)

[2] L. Pinard, S. Hamieh et al. J. Catal., 299, 284-297, (2013)

Communications orales

Thème : Activation de petites molécules

Synthèse de NH₃ à basse pression – Apport des mesures par

échange isotopique

Nicolas Bion, Samuel Bouchet, Fabien Can, Xavier Courtois

IC2MP (UMR 7285), Université de Poitiers, 4 Rue Michel Brunet, 86073 Poitiers Cedex.

L'ammoniac est l'un des composés chimiques les plus produits au monde. Son application principale est la fertilisation des sols, mais l'ammoniac est aujourd'hui également envisagé comme vecteur énergétique. Son utilisation dans les piles à combustible est d'un intérêt croissant et plus largement, **la molécule de NH₃ représente une voie de stockage d'hydrogène** [1].

Le procédé usuel de synthèse de l'ammoniac (dit Haber-Bosch (H-B), $N_2 + 3H_2 \rightarrow 2NH_3$) nécessite l'utilisation de très hautes pressions (20 MPa) et des températures élevées (450-600°C) malgré l'emploi d'un catalyseur. Les recherches se concentrent actuellement sur une réduction d'échelle du procédé associé à un générateur d'hydrogène « vert ». La viabilité de ce type d'unité requiert l'utilisation de faible température (T < 350°C) et de pressions modérées (P < 5 MPa) [2]. Activer N₂ à faible température, éviter l'empoissonnement des sites actifs par H₂ et faciliter la désorption de NH₃ sont les verrous technologiques à lever pour permettre le déploiement d'un tel procédé.

Pour caractériser les propriétés catalytiques qui doivent permettre de lever ces verrous, l'utilisation de la technique d'échange isotopique gaz/solide s'avère un outil puissant. Plus précisément, les réactions d'échange homolytique H₂/D₂ et ¹⁴N₂/¹⁵N₂ permettent d'évaluer la capacité des solides à activer les molécules H₂ [3] et N₂ [4]. Les mesures d'échange homolytique du diazote confirment ainsi que sur les catalyseurs au Ru, l'effet électro-donneur apporté par un dopant ou un support abaisse l'énergie d'activation de la dissociation N≡N. **C'est le cas d'alliages intermétalliques ouvrant la voie vers l'utilisation de solides développés pour le stockage de H₂ comme support de catalyseurs de synthèse de NH₃ [5]. En complément, les réactions d'échange**

hétérolytique renseignent sur l'implication pendant l'acte catalytique d'atomes de réseau du solide. C'est ainsi qu'un mécanisme de synthèse de l'ammoniac a pu être proposé sur Co₃Mo₃N impliquant un **transfert des atomes –N du solide** via un cycle équivalent à celui décrit par Mars and van Krevelen dans le cas de l'oxydation de substrat sur catalyseurs oxydes (Schéma 1). Ce mécanisme a pu

Schéma 1 : représentation schématique de la labilité des atomes –N dans les nitrures de type Co₃Mo₃N.

(Schéma 1). Ce mécanisme a pu être généralisé sur d'autres nitrures tout en posant les fondements de la boucle chimique pour la synthèse de l'ammoniac [6,7].

[1] M. Aziz, A. T. Wijayanta, A. B. D. Nandiyanto, Energies 13 (2020), 3062.

- [2] J. A. Faria, Curr. Opin. Green Sustain. Chem. 29, (2021), 100466.
- [3] C. Fernández, N. Bion, E. M. Gaigneaux, D. Duprez, P. Ruiz, J. Catal. 344 (2016) 16-28.
- [4] C. Croisé, K. Alabd, S. Tencé, E. Gaudin, A. Villesuzanne, X. Courtois, N. Bion, F. Can, ChemCatChem, 15 (2023) e20220117.
- [5] C. Croisé, K. Alabd, A. Villesuzanne, E. Gaudin, S. Tencé, X. Courtois, F. Can, N. Bion, Catal. Commun., 179 (2023) 106689.
- [6] S. M. Hunter, D. H. Gregory, J. S. J. Hargreaves, M. Richard, D. Duprez, N. Bion, ACS Catalysis, 3 (2013) 1719.

[7] S. Laassiri, C. D. Zeinalipour-Yazdi, N. Bion, C. R. A. Catlow, J. S. J. Hargreaves, Faraday Discuss. 229 (2021) 281.

Effect of support on Mo nitride NPs for Nitrogen Activation

<u>Amanda Sfeir¹</u>, Camila A. Teles¹, Maya Marinova², Jean-Philippe Dacquin¹, Said Laassiri³ Sébastien Royer^{1*},

¹ Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.

² Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 – IMEC – Institut Michel-Eugène Chevreul, 59000 Lille, France

³ Chemical & Biochemical Sciences, Green Process Engineering (CBS), Mohamed VI Polytechnic University, UM6P, 43150, Benguerir, Morocco

Over the years, molybdenum related phases have driven much interest in ammonia synthesis due to the importance of this latter in the production of reactive nitrogen for fertilizer industries. In ammonia synthesis, where the reaction is governed by nitrogen adsorption and its activation on the

Figure 1 : Characterization of catalysts: a) XRD b) H₂-TPR

catalyst surface, it is of great interest and importance to comprehend the role of Metal-Support interaction in engineering the electronic and geometric properties of the metal and by consequences modulating its catalytic activity. In this work, Mo nitride nanoparticles are dispersed on different supports (Al₂O₃, CeO₂, TiO₂, SiO₂ and SBA-15) [1] and extensively characterized by XRD, N2-physisorption. H2-TPD and TPR, TEM, XPS, EPR and others, to understand the different nitridation mechanisms. The catalysts are tested for ammonia synthesis and for ammonia decomposition. Particle size, dispersion and nitridation mechanism were as expected influenced by the type of support as seen in

Figure 1. XRD diffractograms show no peaks for Mo-N species over all supports except SiO₂, which suggests that the particle size of Mo-N particles on SiO₂ (\geq 2 nm), whereas in all supported catalysts, the reduction process started at lower temperatures with respect to α -MoO₃ confirming that the reactivity of Mo-O species towards hydrogen was greatly impacted by the nature of the support and particle size. Different nitridation mechanisms, directed by the nature of the support, were observed resulting in different Mo-N species. Catalytic tests were also conducted and the results are presented in Table 1 for ammonia synthesis and decomposition, and compared to reference bulk Mo₂N catalyst, where an enhancement in activity is apparent upon dispersion on alumina and silica for both catalytic tests, whereas no activity was observed for ammonia synthesis for 10-Mo-N/TiO₂ and 10-Mo-N/CeO₂.

Table 1 : Catalytic activity of catalysts of ammonia synthesis and decompos	ition
NH ₃ Synthesis	NH ₃ Decomposition

	Initial rate $(\mu mol g_{active phase}^{-1} h^{-1})^*$	T10	T 100	Ea (kJ mol ⁻¹)
β-Mo2N	76	-	-	-
10-Mo-N/SBA-15	1208	460	585	71
10-Mo-N/SiO ₂	481	425	560	71
10-Mo-N/Al ₂ O ₃	372	450	575	59
10-Mo-N/CeO ₂	ND	470	-	78
10-Mo-N/TiO ₂	ND	510	-	78

Stability tests for siliceous supports for ammonia synthesis were also performed for over 100 h to confirm the stability of the SBA-15 pores and ensure that no sintering occurs over time. Both catalysts showed great stability under stream, and retained the same activity after several cycles.

[1] A. Sfeir et al., *Faraday Discuss.*, 2023, 243, 126-147

Réduction des NO_X par H₂ pour la dépollution des gaz d'échappement de moteurs à hydrogène

Amira Ben Attia¹, Fabien Can¹, Xavier Courtois¹

¹ IC2MP Institut de Chimie des Milieux et Matériaux de Poitiers, UMR 7285 CNRS, Université de Poitiers, 4 rue Michel Brunet, 86073 POITIERS, France.

Pour les véhicules lourds, les moteurs à combustion interne à hydrogène (H₂-ICE) représentent une alternative décarbonée intéressante en termes d'autonomie et de coût par rapport à une propulsion électrique via batteries ou à pile à combustible. Cependant, la formation de NO_x dans le moteur est à envisager et le développement d'un post-traitement catalytique adapté est nécessaire [1]. Dans cette optique, l'utilisation de H₂ comme réducteur des NO_x (H₂-SCR) apparait attractive. Les catalyseurs à base de métaux nobles (Pt, Pd) sont connus pour être actifs en H₂-SCR, mais ils présentent une fenêtre de travail étroite et un risque de production de N₂O, gaz à fort pouvoir d'effet de serre [2]. Cette étude vise à mieux comprendre les mécanismes mis en jeu dans cette réaction, en particulier vis-à-vis de la génération *in-situ* d'espèces réduites NH_x censées jouer un rôle clé dans la H₂-SCR et pouvant élargir la fenêtre de travail des catalyseurs [3].

Dans cette optique, des catalyseurs à très faibles charges en platine (0,15-0,3 %) ont été préparés et différents paramètres ont été examinés : (i) l'influence de l'acidité du support en utilisant différentes silice-alumines, car les sites acides de Brønsted doivent favoriser la génération des intermédiaires nitrosamines [3] ; (ii) l'ajout de fer, dans le but de favoriser l'hydrogénation des NOx [4] ; (iii) la masse de catalyseur, permettant d'évaluer la distribution des produits (N₂, N₂O, NH₃) le long du lit catalytique.

La meilleure conversion de NO_x est observée avec le support le plus acide, SiO₂(5 %)-Al₂O₃. Avec 200 mg de catalyseur (Fig. 1A), la conversion des NOx est totale de 50 °C à 200 °C, puis elle diminue pour les températures plus élevées car l'hydrogène est oxydé par l'oxygène. Cette fenêtre de fonctionnement est considérablement réduite par l'ajout de fer. Cependant une augmentation du rendement en azote à basse température est observée, de même que l'émission de traces de NH₃ (Fig. 1B). Cette étude a également montré que la distribution des produits dépend fortement de la masse du catalyseur. En particulier, l'utilisation d'une très faible masse (5 mg, Fig. 1C) permet de détecter la présence de NH₃. Il est maintenant prévu d'examiner l'implication des espèces NH_x comme potentiels intermédiaires dans la réaction de H₂-SCR par DRIFT.

Fig. 1 : Profil de conversion des NOx et rendement en sous-produits azotés en fonction de la température sur 0.30%Pt/Si-Al. (a) avec 200 mg du catalyseur. (c) avec 5 mg. (b) 10%Fe-0.30%Pt/Si-Al avec 200 mg du catalyseur. Mélange réactionnel : 400 ppm NO, 2 % O₂, 1 % H₂ (D_{total} : 150 ml.min⁻¹).

[1] J. Krishnan Unni, P. Govindappa, L. M. Das, Int. J. Hydrogen Energy 42 (2017) 643-651

- [2] J. Yang, H. Jung, Chem. Eng. J. 146 (2009) 11-15.
- [3] G. Qi, R. T. Yang, F. C. Rinaldi, J. Catal. 237 (2006)381–392.
- [4] Z. Hu, T. Zhang, D. Li, R. T. Yang, Catal. Sci. Technol. 11 (2021) 886-894

Selective catalytic reduction of NOx with a (NH₃+ H₂) mixture on silversupported catalyst

Hitesh Duggal^{1, 2}, Fabien Can¹, Xavier Courtois¹, Rénal Backov²

¹ University of Poitiers, CNRS, UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 Rue Michel Brunet, TSA 51106, 86073 Cedex 9, France.

² University of Bordeaux, CNRS, UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Albert Schweitzer, 33600 Pessac, France.

NOx selective catalytic reduction (SCR) has been widely investigated as a viable technology for reducing air pollutants from lean burn and diesel engines. In order to decrease the CO_2 emission from the transportation sector, the usage of carbon-free fuels such as ammonia and hydrogen in internal combustion engine is envisaged. However, NOx emission should still occur and the NOx treatment by a mix of H₂ and NH₃ become a promising strategy for pollution treatment.

This research is based on the NOx reduction by NH₃ assisted with H₂ using a representative exhaust gas mixture at temperature ranging from 150°C to 450°C. This study is performed with silverbased catalysts (Ag_x/Al₂O₃, with x = 1,2,3,4 wt. %) prepared using wet impregnation. The effect of supports on the selective catalytic reduction (SCR) over silver catalysts was investigated by using various commercial materials. Chemical and physical characterizations of the catalysts have been carried out with the (NH₃+H₂) SCR, to comprehend the influence of the metal and support in nitrogen formation. This work demonstrated that the conversion of NO to N₂ was significantly enhanced by greater surface area evaluated by N₂-physisorption, greater Lewis Acidic Sites (LAS) concentration assessed by pyridine adsorption monitored by FTIR spectroscopy, and NH₃-TPD. In addition to these characteristics, the following aspects affected the production of nitrogen during the SCR process: (i) the existence of various silver species; (ii) the quantity of H₂ employed (Figure 1); and (iii) the ammonia's reactivity with acid sites. Moreover, it was proposed that the high activity and selectivity of the SCR reaction are caused by the acid sites of alumina efficiently stabilizing Ag species in a hydrogen-containing atmosphere. Finally, it was shown that Ag_{2%}/Al₂O₃ provides the maximum NOx

conversions across the operated temperature range as seen in Figure-1.

Based on the results obtained, this investigation will be expanded to include a novel class of acidic macrocellular silicaalumina supports that are synthesized using single pot alkaline sol gel process coupled with concentrated emulsion technique in order to have more surface properties like higher surface area, acidic properties that are expected to facilitate the NOx conversions in (NH_3+H_2) SCR.

Figure 1: 2wt% Ag catalyst: effect of Al₂O₃ support and H₂ concentration on the NOx conversion at 175°C. Gas mixture: 400 ppm NH₃, 400 ppm NO, 0-4000 ppm H₂, 10% O₂, 4% H₂O (Total Flow: 333ml/min, 100 mg catalyst)

- [2] M. Richter, R. Fricke, R. Eckelt, Catalysis Lett. 94 (2004) 115-118.
- [3] D.P. Debecker, C. Boissière, G. Laurent, Chem Commun. 51(74) (2015) 14018-14021.

^[1] K. Shimizu, A. Satsuma, J Phys Chem C.111 (5) (2007) 2259-2264.

Upgrading N₂O for selective catalytic photo-oxidative processes

Oriane Delaunay, Audrey Denicourt-Nowicki, Alain Roucoux.

Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France.

Nitrous oxide (N_2O) is the third greenhouse gas after carbon dioxide and methane, with a global warming potential of almost 300 times higher compared to CO_2 owing to its long lifetime (114 years) in the atmosphere.[1] The emissions principally arise from agriculture and also chemical industries, for instance those producing nitric or adipic acid. These industries will have to face more drastic European standards concerning this gas, currently burnt in flares,[2] which constitutes a destructive and energy-consuming process. In a sustainable way, upgrading N_2O as an oxygen source in oxidation reactions appears relevant, but its activation remains challenging due to its weak reactivity. To alleviate the drastic temperatures generally required, photocatalysis constitutes a milder alternative to activate N_2O and selectively oxidize organic compounds.

Herein, we demonstrate the efficient photoactivation of N_2O with silver-doped titanium dioxide and unlock its potential as oxygen atom transfer, using phosphines as molecular probes.[3] Silver-doped TiO₂ catalyst specifically activates nitrous oxide at a very low metal loading (0.3 wt%) and the efficient oxygen transfer from N_2O to phosphines under photocatalytic activation in a gas-liquid-solid system was achieved with complete conversion and selectivity, only releasing N_2 as sole benign co-product (Figure 1). Moreover, nitrous oxide is more selective than dioxygen, allowing only transfer to the phosphorus atom without mineralization.

The system was then extended to the oxidative homo-coupling of amines into symmetric imines, and cross-coupling of amines with alcohols into unsymmetric imines, with release of N_2 and H_2O .[4] Here again, reactions under N_2O atmosphere exhibited higher selectivities than the ones carried out under a dioxygen atmosphere.

Figure 1: Ag/TiO₂ catalyzed photocatalytic activation of N₂O for oxidation of triphenylphosphine and synthesis of imines.

[1] O. D. Frutos, G. Quijano, A. Aizpuru, R. Muñoz, Biotechnol. Adv. 36 (2018) 1025–1037.

[2] M. V. Parfenov, D.P. Ivanov, A.S. Kharitonov, K.A. Dubkov, Ind. Eng. Chem. Res. 61 (2022) 8607-8615.

[3] O. Delaunay, E. Zghab, A. Denicourt-Nowicki, A. Roucoux, ChemCatChem. 15 (2023).

[4] O. Delaunay, A. Denicourt-Nowicki, A. Roucoux, ChemCatChem. (2023) DOI 10.1002/cctc.202301269.

Ni exsolution from (NiO)_xZrO₂ for catalytic CO₂ methanation

Yuxin Deng^{1*}, Hélène Lauron-Pernot¹, Marco Daturi², Josefine Schnee^{1*} ¹Laboratoire de Réactivité de Surface (LRS), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Campus Pierre et Marie Curie, F-75005 Paris Cedex 05, France ²Laboratoire Catalyse et Spectrochimie (LCS), CNRS, Normandie Université, ENSICAEN, UNICAEN, 14000 Caen, France

Ni-ZrO₂ catalysts (sometimes doped with additional metals) are being intensely studied, with Ni being an attractive candidate to break the dependency on noble metals. Such catalysts can be prepared by several approaches. Ni can be deposited onto the surface of ZrO_2 by impregnation, for instance for CO₂ methanation (CO₂ + 4H₂ \rightarrow CH₄ + 2H₂O). ZrO₂ then plays a catalytic role through its O vacancies. Alternatively, (NiO)_xZrO₂ can be prepared by co-precipitation, which means that Ni is directly incorporated both in the bulk and at the surface of the catalyst. This was done for instance for 1,3-butadiene hydrogenation, to purify industrial alkene streams. In that case, ZrO₂ is catalytically rather inactive, which is reported as an advantage over other supports. Finally, Ni can be exsolved from ZrO₂-based solid solutions, among others (NiO)_xYSZ (Y-stabilized zirconia), to obtain Ni nanoparticles at the surface. This was done mainly for electrocatalytic CH₄ steam reforming. Exsolution means migration of a metal from the bulk of the material towards the surface. This original approach is to date mainly known from the field of perovskites, where it leads to nanoparticles with a controlled size distribution that are anchored at the surface and thus particularly stable under reaction conditions[1]. The objective of the present work is to explore exsolution beyond the field of perovskites, in particular the reduction conditions and structure-exsolution relationships, in order to increase the number of active sites at the surface of (NiO)_xZrO₂ catalysts prepared from solid solutions. This will then allow taking advantage of the one-pot nature of the exsolution approach as compared to other methods that are two-pot. Catalytic investigations are carried out here in CO₂ methanation.

 $(NiO)_x ZrO_2$ catalysts (with x = 0 or 3 wt.% Ni) were prepared by co-precipitation using Ni(NO₃)₂·6H₂O and ZrO(NO₃)₂·4H₂O as precursors. The resulting precipitates were calcined for 6 hours at 600°C. These samples are denoted here as 0Ni and 3Ni, respectively. As reflected by the actual Ni weight content measured through ICP-OES (Table 1) combined with the XRD patterns and Raman spectra of the prepared materials, Ni within the 3Ni material is located both at the surface and in the bulk. The specific surface area of the materials is significant (80-100 m^2/q . Table 1). The H₂ consumption during H₂-TPR, suggesting that the whole Ni initially contained in the 3Ni material was reduced (Table 1), combined with post-H₂-TPR XRD and XPS data (not shown) indicate that Ni exsolution occurs upon heating to 950 °C under H₂(5%)/Ar. From the XPS spectra, it appears that the Ni/Zr surface atomic ratio increases after H₂-TPR vs. before, while the (Ni+Zr)/O surface atomic ratio remains unchanged. This indicates that Ni atoms replace Zr atoms at the surface of the material upon reduction. The 3Ni material was investigated as CO₂ methanation catalyst before and after H₂-TPR. The two samples lead to comparable CO_2 conversions but to different selectivities to CH_4 . Over the sample before H_2 -TPR, CH₄ is the main product, whereas over the sample after H_2 -TPR, CO is mostly produced. The evolution of the selectivities will be discussed as a function of the weight content of Ni and the reducing treatment/exsolution conditions, with the help of operando IR spectra to elucidate the reaction mechanism.

Table 1.	Properties	of (NiO	$_{\rm y}ZrO_2$	materials
Tuble 1.	1 Toportioo		JX L I O 2	materials

Sample	Wt.% Ni theoretical	Wt.% Ni actual	S _{BET} (m ² .g ⁻¹)	Wt.% Ni reduced during H ₂ -TPR
0Ni	0	0	111	0
3Ni	3	2.5	82	2.9

The conclusions of the present work will pave the way for establishing structure-exsolutionactivity relationships not only in CO₂ methanation but in Ni-catalyzed reactions in general, to benefit from the one-pot nature of the exsolution approach with the ultimate goal of facilitating industrial synthesis of Ni-based catalysts.

[1] D. Neagu, T.-S. Oh, D. N. Miller, H. Ménard, S. M. Bukhari, S. R. Gamble, R. J. Gorte, J. M. Vohs, J. T. S. Irvine, *Nat Commun* **2015**, *6* (1), 8120.

Operando/in situ X-ray photoemission and absorption study of Ni-doped

CeO₂ catalyst for CO₂ methanation reaction

M. Barreau¹, S. Zafeiratos^{2,*}

¹Laboratoire Laboratoire Catalyse & Spectrochimie (LCS), UMR 6506 CNRS-UniCaen-ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France

²Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515 CNRS-UdS, 25 Rue Becquerel, 67087 Strasbourg, France

 CO_2 hydrogenation to CH_4 (i.e. CO_2 methanation) is gaining increasing interest as a promising way to store intermittent renewable energy in power-to-gas technology [1]. In this work 4 wt. % Nidoped CeO_2 nanoparticles (NiCeO_x) were synthesized from Schiff base metal complexes [2]. Catalytic tests were carried out in a continuous flow fixed–bed reactor from 30 to 400 °C. Prior to the reaction the catalysts were calcined at different temperatures and consequently activated in H₂

at 400 °C. In situ ambient pressure X-ray photoelectron spectroscopy experiments (AP-XPS) were performed at the TEMPO and EMIL (CAT branch) beamlines of SOLEIL and BESSY II (HZB) Synchrotron radiation facilities in France and Germany, respectively. Operando soft X-ray absorption spectroscopy (sXAS) at 1 bar CO₂:H₂ mixture was carried out at APE-HE beamline of Elettra synchrotron (Trieste, Italy).

The NiCeO_x catalyst shows high Ni mass-specific activity (Figure 1a), which can be enhanced further, after proper calcination. The catalyst is composed of highly dispersed Ni on ceria as shown by STEM/EDX analysis (Figure 1b). In situ AP-XPS in the soft and tender X-ray range reveals that the calcination temperature influences ceria and Ni reducibility, as well as Ni surface

Figure 1. a) CO₂ conversion (X_{CO2}) and CH₄ selectivity (S_{SH4}) of NiCeO_x and CeO_x catalysts as a function of temperature for two independent experiments (exp. 1 and 2) *Reaction conditions*: CO₂:H₂ (1:4), GHSV=12000 h⁻¹, 1 bar. **b)** STEM/EDX elemental mapping of NiCeO_x **c)** Ni L₃-edge and **d)** Ce M₅-edge sXAS spectra of NiCeO_x catalyst under activation and light-off CO₂ methanation reaction. *sXAS Conditions*: activation in 1 bar 10% H₂/He at 355 °C, introduction of CO₂:H₂:He (1:4:20) reaction mixture at 135 °C.

concentration. Operando sXAS under CO₂ hydrogenation (1 bar CO₂:H₂ at 200-370 °C) shows that ionic Ni^{δ +} (2< δ <3) and Ce³⁺ are the dominant surface sites on this catalyst under reaction conditions (Figure 1c and 1d), in contrast to the commonly accepted notion that metallic Ni is indispensable for CO₂ methanation reaction. Finally, comparison of AP-XPS results between Ni-doped and pure CeO₂ helped to identify and quantify the adsorbed species formed on the catalysts' surface in CO₂:H₂ mixture. In particular, Ni doping enhances the formation of oxygen vacancies, allowing higher abundance of adsorbed hydroxyl groups and carbonate species [3]. The presented results deepen our understanding regarding the complex interplay and the nature of different surface sites for CO₂ hydrogenation over Ni-ceria catalysts.

Acknowledgments

M.B and S.Z acknowledge the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-21-CE05-0023 (project CUCACO2).

- [1] E. Cheol Ra, et al., ACS Catal. 10 (2020) 11318–11345
- [2] M. Barreau, et al. Mater. Today Chem. 26 (2022) 101011
- [3] M. Barreau, et al. Angew. Chem. Int. Ed. (2023), e202302087

In situ transformation of Layered double hydroxide arrays into 2D Metal Organic Framework for oxygen evolution reaction

Yakoub SMATI¹, Mireille TURMINE¹, Vincent VIVIER¹, Julien REBOUL¹, Juliette BLANCHARD¹

¹ Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, 4Place Jussieu, 75005, Paris,

Hydrogen (H₂) has been one of the world's most sought energy for the last few decades, due to the problems of fossil fuels such as oil and gas. One of the best methods to produces hydrogen (H_2) and oxygen (O_2) simultaneously without greenhouse gas is the water splitting process¹. The challenge of this technology is the slow kinetic of oxygen evolution reaction on anodic part, which hampers the processus. Herein, we synthesized two kind of materials, Layered Double Hydroxide (LDH) and Metal-Organic Framework (MOF), both possessing a lamellar structure and nanosheet array (2D) morphology and used them as electrocatalysts for OER. A fast electrodeposition step at -1.0V vs Ag/AgCI allowed us to synthesize sulfated NiFe-LDH as thin layers of smooth nanosheets arrays on Ni Foil (Figure 1). Performances for OER of this catalyst were promising since it requires only 270 mV overpotential to reach 30 mA/cm² with 20 h of stability, making it one of the lowest overpotential on planar electrode to date. These LDH nanosheets were then used as preformed metal precursors to synthesize thin and rough NiFe-MOF nanosheet arrays by a soft solvothermal treatment in the presence of terephthalic acid^{2,3} (Figure 1). Raman and ATR-IR spectra confirmed the total conversion of LDH into MOF and SEM assured that the nanosheet array structure of parent LDH was preserved. EDX analysis, as well as XPS analyses confirmed the existence of both Ni and Fe in LDH and MOF. Characterization of the spent electrocatalyst suggests the formation of BNiFeOOH on surface of NiFe-LDH after 20 h OER reaction, indicating that an active phase is formed by MOF degradation. In this presentation, the characterizations of two catalysts (LDH and LDH-derived MOF), fresh and spent, will be presented and their performances in OER will be compared to discuss a structure-activity relationship.

Fig. 1. (a) synthesis scheme for the two electrocatalysts; SEM images of (b) NiFe-LDH and (c) NiFe-MOF; d) Linear sweep voltammetry and e) Chronoamperometry at V=1.67V_{RHE} of NiFe-LDH.

- [1] Du, Y.; Li, B.; Xu, G.; Wang, L.. InfoMat 2023, 5 (1), e12377.
- [2] Li, Z et al. Chem. Sci. 2015, 6 (11), 6624–6631
- [3] Liu, Y et al. Small 2022, 18 (26), 2201076.

Nanosecond pulse dielectric barrier discharge for dry reforming of CH4

<u>TEJA VARDHAN REDDY THURPU</u>,^{1,2} Elodie FOURRE¹, Sylvie ROSSIGNOL², Catherine BATIOT DUPEYRAT ¹

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR-7285, Poitiers, France. ²Institut de recherche sur les céramiques (IRCER), UMR 7315, Limoges, France.

 CH_4 and CO_2 , are two major greenhouse gases, and using these as carbon sources for producing clean fuels and valuable chemicals has become important to achieve a carbon-neutral ecosystem and sustainable low-carbon economy. The plasma-driven CH_4 reforming with CO_2 has received great attention recently due to its advantages over conventional processes [1]. Nanosecond pulsed DBD plasma is gaining interest in converting CH_4 and CO_2 as it shows enhancing energy efficiency

of the plasma chemical process by generating high instantaneous power and electric fields [2]. This study investigated CH₄ reforming with CO₂ using nanosecond pulsed DBD plasma. The effects of pulse parameters (pulse repetition frequency and pulse width), discharge power, and molar ratios were evaluated on the reaction performances. All the experiments were conducted at a constant flow rate of 40 mL/min and molar ratio (CH₄/CO₂; 1/1). At constant power, (16 W) the increase in pulse width

Fig. 1.a) Conv. of CH_4 and CO_2 versus frequencies 1.b) Conv. of CH_4 and CO_2 versus P (W)

from 150 ns to 175 ns enhanced CH₄ conversion from 18.6 % to 21.1 %, and CO₂ conversion was almost similar around 8.0 % while the products' selectivity remained constant. CH₄ conversion was also enhanced by increasing the pulse frequency (Fig 1a), while the deposited power was fixed at 16 W. The best CO₂ and CH₄ conversions were 8.0 % and 21.1 %, respectively, at 10 kHz. The highest selectivity of CO was obtained at a frequency of 4 kHz. The selectivity to other products (C₂ hydrocarbons) remained constant at different pulse frequencies (Table 1). The best hydrocarbon selectivities were obtained for C₂H₆ (21.3 %), followed by C₃H₈ (8.1 %). Methanol was identified with a low selectivity of 1.8 % at 10 kHz. Increasing the deposited power from 10 to 16 W leads to an increase in both CH₄ and CO₂ conversion as expected (Fig.1b). The maximum selectivities of CO and C₂ hydrocarbons were obtained at the lowest discharge power while C₃H₈ and methanol were obtained at high discharge power (Table 2). Adding oxygen at different percentages in the feed gas at a constant flow rate of 40 mL/min led to a shift in the selectivity of products from hydrocarbons to CO. A CO selectivity close to 85 % was reached for a CH4 conversion of 33.1 % at a discharge power of 15 W for 20% of O₂ to feed gas showing that partial oxidation of methane is favored under nano pulsed plasma discharge. The coupling of plasma with catalyst will be discussed, with La₂O₃-based materials being deposited at the surface of the inner electrode covered with geopolymers.

F (kHz)		C.B				
	C ₂ H ₆	C3H8	СО	C2	СН3ОН	(%)
4	21.4	6.5	56.0	1.6	1.4	86.9
6	20.9	7.0	52.0	1.6	1.5	83.0
8	21.2	7.0	48.6	1.6	1.5	79.9
10	21.3	8.1	48.7	1.7	1.8	81.6

Table 1 Selectivities of products at different frequencies

Table 2: Selectivities of products at different powers

Р	Selectivity (%)								
(W)	C ₂ H ₆	C ₃ H ₈	СО	C ₂	CH ₃ OH	(%)			
10	22.5	7.1	56.6	2.0	1.3	89.5			
13	21.3	7.8	52.2	1.8	1.6	84.7			
16	21.3	8.1	48.7	1.7	1.8	81.6			

[1] Wang, Li, et al. "Direct conversion of CH4 and CO2 to alcohols using plasma catalysis over Cu/Al (OH) 3 catalysts." *Chemical Engineering Journal* 466 (2023): 143347.

[2] Wang, Xiaoling, et al. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters." *Applied energy* 243 (2019): 132-144.

Étude comparative des méthodes de synthèse pour les catalyseurs type pérovskite. Application au reformage à sec du méthane.

Faicel BELGACEM,¹ Raphaël SCHNEIDER¹, Jean-François PORTHA¹, Laurent FALK¹.

¹LRGP, Université de Lorraine, 1 Rue Grandville, 54000 Nancy, France.

En 2018, près de 90 % du biogaz produit, un mélange de méthane (CH₄) et de dioxyde de carbone (CO₂) résultant de la méthanisation, a été directement utilisé pour la production d'électricité et de chaleur. Cependant, l'augmentation du nombre d'usines de valorisation du biogaz suggère que son utilisation en tant que matière première augmentera dans les années à venir¹. En effet, avec l'impératif de réduire drastiquement l'utilisation des ressources fossiles, de nouvelles sources d'approvisionnement en chaleur et électricité deviendront primordiales. Ainsi, le biogaz jouera un rôle clé dans le mix énergétique des générations futures. Le gaz de synthèse, avec sa haute valeur ajoutée, est généralement produit par reformage du méthane à la vapeur (SMR). Cependant, le reformage à sec du méthane (DRM) suscite un intérêt croissant chez les chercheurs et les industriels. Les défis associés à la valorisation du biogaz par DRM concernent l'efficacité du processus et le développement de catalyseurs actifs dans des conditions douces, tout en minimisant la déposition de coke. Ce dernier problème est le principal obstacle à son application à l'échelle industrielle².

Les pérovskites sont des oxydes de formule ABO₃. En catalyse, leur réduction par le dihydrogène conduit à l'exsolution partielle de nanoparticules métalliques (provenant des sites B). Cela résulte en des nanoparticules hautement dispersées sur la surface de la pérovskite et une interaction renforcée entre le métal et le support³. L'optimisation des paramètres de synthèse et de composition pour les pérovskites est un paramètre clé à prendre en compte pour améliorer leur efficacité catalytique dans de nombreuses réaction, telles que le reformage à sec du méthane.

Cette étude comparative des méthodes Auto-Combustion, Pechini et Citrate vise à souligner les différences notables obtenues pour une même formulation de pérovskite SrZrO₃ substituée en Ni et Fe noté SrZr_{0.5}(Ni_{0.8}Fe_{0.2})_{0.5}O₃.

L'étude permet d'avoir une vue d'ensemble sur les matériaux synthétisés mettant en lumière, la structure cristalline avant et après réduction, le profil de réductibilité, ainsi que les propriétés de surface par des tests de chemisorption permettant d'étudier la basicité et la surface métallique ainsi que la dispersion du nickel. Elle inclut des tests catalytiques dans des conditions isotherme de 600 à 750 °C à pression atmosphérique et un test de stabilité de 22h à 750 °C. Les résultats ont permis de mettre en avant l'influence des méthodes de préparation, sur les paramètres de surface, de structure et de réactivité des différents catalyseurs.

Les résultats de cette étude reflètent l'importance du choix de la méthode de synthèse et les différences notables pour la même formulation de perovskite, et offre des éléments pour orienter les recherches futures dans le développement de pérovskites substituée offrant une structure stable.

[1] M. Banja et al., Support for Biogas in the EU Electricity Sector – A Comparative Analysis, Biomass and Bioenergy 2019, 128, 105313.

[2] S. Bhattar et al., Review on Dry Reforming of Methane over Perovskite Derived Catalysts, Catalysis Today 2021, 365, 2-23.

[3] S. Royer et al., Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chem. Rev. 2014, 114, 10292–10368.

Etude de la synthèse Fischer-Tropsch à partir d'un syngaz ex-biomasse

et d'une source d'hydrogène renouvelable

<u>Kanthika Patprom^{1,2}</u>, Carlotta Panzone¹, Alban Chappaz¹, Jean-Marc Borgard³, Geneviève Geffraye¹, Pascal Fongarland²

¹Univ Grenoble Alpes, CEA, LITEN, DTCH, LRP, F-38000 Grenoble, France ²Univ. Lyon, CNRS, CPE Lyon, CP2M, Lyon, France ³Univ Paris Saclay, CEA, ISAS, DRMP, LM2T, Gif-sur-Yvette, France

Le procédé « Biomass-to-liquid (BtL) » visant une gazéification de biomasse en syngaz puis une transformation de ce syngaz par une synthèse Fischer-Tropsch présente l'avantage de produire un brut de synthèse pouvant ensuite être transformé en différents carburants. Cependant, le rendement de ce procédé est faible (25-40%)^[1] à cause du faible ratio H/C du syngaz issu de la biomasse. Une voie d'optimisation de ce procédé consiste à ajouter une unité d'électrolyse de l'eau pour ajuster le ratio H/C dans le syngaz, appelé procédé « Power&Biomass-to-liquid (PBtL) » ^[2]. L'objectif de ce projet est d'évaluer la performance de procédés PBtL sous l'effet de variations dynamiques de la composition des intrants.

Dans ce travail, le catalyseur Fe-K-Cu-La supporté sur alumine a été synthétisé par coimprégnation humide. Une campagne de tests de performances de ce catalyseur dans un réacteur à lit fixe avec le mélange $H_2/CO/CO_2$ a été réalisée en faisant varier les conditions opératoires sur une large gamme (température de 220-325°C, GHSV de 1040-9984 NmL/g_{cat}/h, pression totale de 5-20 bar, ratio $H_2/2CO+3CO_2$ de 0,05-2 et ratio $CO_2/CO+CO_2$ de 0,25-0,80).

Figure 1 Influence du ratio $H_2/2CO+3CO_2$ sur (a) la conversion du CO et CO_2 (b) la distribution des produits. Conditions opératoires : 300°C, 2080 Nml/gcat/h, 15 bars, ratio $CO_2/(CO+CO_2)$ ratio de 0.5 et ratio $H_2/(2CO+3CO_2)$ de 0,05-2.

L'effet du ratio $H_2/2CO+3CO_2$ sur la performance du catalyseur est présenté sur la figure 1. Le résultat montre que, quand le ratio $H_2/2CO+3CO_2$ est inférieur à 1 (valeur stœchiométrique), la conversion de CO_2 devient négative, ce qui montre que du CO_2 est principalement produit via la réaction WGS à partir du CO. De l'autre côté, la conversion de CO et CO_2 augmente avec l'excès en H_2 (ratio $H_2/2CO+3CO_2$ égale ou supérieur à 1). Cependant, ces conditions limitent la formation des hydrocarbures à longue chaîne en favorisant la formation de méthane. Ces résultats montrent l'importance d'effectuer l'hydrogénation du mélange $CO+CO_2$ avec un syngaz riche en H_2 dans des conditions stœchiométriques ($H_2/(2CO+3CO_2) = 1$). Ces résultats sont actuellement utilisés pour développer et valider un modèle cinétique détaillé pour décrire les performances du catalyseur dans la gamme opératoire ainsi que la formation de toutes les principales espèces observées. Le modèle pourra ensuite être utilisé pour des simulations plus complexes, telles que la modélisation de réacteurs et des simulations de procédés.

^[1] M. Martinelli et al., Appl. Catal. Gen., vol. 608, p. 117740, Nov. 2020.

^[2] M. Dossow et al., Renew. Sustain. Energy Rev., vol. 152, p. 111670, Dec. 2021.

Oxyde-zeotype bifunctional catalysts efficient for the conversion of CO to light olefins

Antoine Salichon,¹ Pavel Afanasiev¹, Stéphane Loridant¹

¹IRCELYON-UMR 5256, Univ. Lyon, Université Claude Bernard-Lyon 1, 2 av. A. Einstein, F-69626, Villeurbanne Cedex, France.

Light olefins ($C_2^{=}-C_4^{=}$) are key chemical intermediates mainly produced by oil-based steam cracking and fluid catalytic cracking [1]. The negative environmental impact of these processes associated with low selectivity towards propylene has led to develop more eco-friendly and selective production methods [1]. Few years ago, a mixture of an hydrogenating metal oxide and an acidic zeotype (OX-ZEO) was found to convert syngas (which can originates from wastes and/or biomass) to hydrocarbons with high olefins selectivity [2]. Nevertheless, OX-ZEO attractivity is compromised due to relatively weak activity and high CO_2 selectivity [2-3]. Recently, GaZr mixed oxides were reported to possess quite high activity [4]. Nonetheless, the precise mechanisms happening on the oxide and the zeotype need further investigations.

In this context, GaZr oxides were synthesized by co-precipitation and hydrothermal methods as well as SAPO-34 zeotypes by hydrothermal method. OX-ZEO bifunctional catalysts were tested in a fixed bed reactor from 1 to 25 bar, at 300 to 400 °C under a $H_2/CO/N_2=60/30/10$ feed. Structural, textural, redox and acidic properties were evaluated by different techniques. Furthemore, *in situ* & *operando* DRIFTS and *in situ* XPS were deployed to characterize oxides and OX-ZEO mixtures.

Prepared GaZr oxides with high surface area all exhibited remarkable performance when mixed with SAPO-34 zeotype combining high activity (conversion up to 40%) and olefins selectivity (olefin/paraffin (O/P) molar ratio up to 10). Interestingly, high O/P ratios were obtained when combined with highly acidic SAPO-34 suggesting important methanol coverage due to the high activity which decreases olefins hydrogenation probability. This originates from the facile H₂ dissociation ability of gallium cations as Ga-H hydrides were observed even at T=100 °C by means of *in situ* DRIFTS (Figure 1). In parallel, *in situ* XPS revealed an increased

Figure 1 : In situ DRIFT spectra of $GaZr_5O_x$ catalyst at different temperatures under H₂/CO=67/33 flow.

surface Ga content under H_2 environment. Additionally, the desorbed H_2 quantity increased after reduction suggesting H_2 dissociation ability improvement which may be correlated to the Ga surface enrichment. Finally, observation of hydrides and apparent OH groups consumption under reaction mixture (Figure 1) questions the role of such species in the formation of formates and methoxy intermediates to further produce methanol.

In summary, GaZr solid solution was shown to exhibit remarkable performance for the conversion of syngas to methanol owing to its pronounced hydrogenating character. Ongoing *in situ* & *operando* spectroscopy tools will help gain more insights on the role of Ga-H and OH species during CH₃OH formation as well as on the hydrocarbon pool mechanism responsible of methanol dehydration to light olefins.

- [1] M. Monai, M. Gambino, S. Wannakao, B. Weckhuysen, Chem. Soc. Rev. 50 (2021) 11503-11529.
- [2] K. Cheng, B. Gu, X. Liu, J. Kang, Q. Zhang, Y. Wang, Angew. Chem. Int. Ed. 55 (2016) 4725-4728.
- [3] A. Salichon, P. Afanasiev, S. Loridant, ACS Catal. 14 (2024) 243-248.

[4] F. Meng, P. Zhang, L. Ma, G. Yang, R. Zhang, B. Wang, Y. Hu, Z. Li, Chemical Engineering Journal. 467 (2023) 43500.

Mn-Co supportés par CeO₂ pour l'oxydation totale des polluants issus de la combustion de la biomasse

<u>Caroline Paris</u>^{1*}, Éric Genty¹, François Devred², Pierre Eloy², Fanny Hanon², Christophe Poupin¹, Stéphane Siffert¹, Éric Gaigneaux², Renaud Cousin¹

¹Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral côte d'Opale, 145 avenue Maurice Schumann, 59140 Dunkerque.

²Institute of Condensed Matter and Nanosciences, Place Pasteur 1, L4.01.09, B-1348 Louvain-la-Neuve (Belgium)

*Corresponding author : caroline.paris@univ-littoral.fr

Les catalyseurs à base d'oxyde métallique sont prometteurs pour l'élimination de polluants issus de la combustion de la biomasse tels que le CO, les COV et les HAP en raison de leurs performances catalytiques et de leur faible coût. L'oxyde de cérium (CeO₂) a été sélectionné comme support en raison de son couple redox Ce³⁺/Ce⁴⁺ permettant une mobilité élevée de l'oxygène [1]. L'ajout d'une phase active composée d'oxyde de métaux de transition permet d'augmenter les performances catalytiques des matériaux préparés. Les oxydes de manganèse possèdent une forte capacité de stockage/libération d'oxygène et d'excellentes propriétés rédox, expliquant l'activité prometteuse dans les réactions d'oxydation choisies [2]. De plus, les oxydes de cobalt sont reconnus comme de bons catalyseurs pour l'oxydation du CO à basse température [3] et leur interaction avec CeO₂ peut améliorer les propriétés catalytiques en affaiblissant la liaison métal-oxygène [4]. Ce travail s'inscrit dans cette logique d'étudier les effets synergétiques entre les oxydes de cobalt et de manganèse déposés sur CeO₂ pour l'oxydation d'un mélange CO-COV.

Des catalyseurs à base de Co-Mn ont été préparés par imprégnation. Leurs propriétés physicochimiques ont été caractérisées par analyses thermiques, DRX, physisorption de N₂, SPX et RTP-H₂. Les activités catalytiques ont été évaluées dans un réacteur en verre à lit fixe en flux continu à pression atmosphérique avec une concentration en CO et/ou en toluène de 1000 ppm respectivement.

La mesure par physisorption d'azote du support CeO₂ montre une structure mésoporeuse avec une surface spécifique de 145 m²/g. L'imprégnation de Mn et Co ne modifie pas les propriétés morphologiques. De plus, les diffractogrammes ont montré que la phase cristalline de l'oxyde de cérium reste inchangée après ajout de manganèse et/ou de cobalt. La taille des cristallites de la phase cérianite a été estimée à 8,5 nm. Aucune raie de diffraction n'a été rapportée pour la phase Co ou Mn suggérant une bonne dispersion de ces phases.

Les activités catalytiques pour l'oxydation du CO des matériaux sont représentées sur la

Figure 1. Une meilleure activité catalytique est observée pour le catalyseur MnCo par rapport aux catalyseurs mono-imprégnés de Co et Mn. Cette meilleure performance suggère un effet synergique intéressant entre les espèces Mn et Co pour les réactions d'oxydation catalytique, qui sera discuté lors de la présentation. Les catalyseurs à base de manganèse et de cobalt sont donc prometteurs pour les réactions d'oxydation catalytique afin de remplacer les catalyseurs à base de métaux nobles.

Figure 1 – Conversion du CO en fonction de la température sur 10Mn (bleu), 10Co (gris), 5Mn5Co (jaune) et CeO_2 (orange).

- [1] G. Fu, D. Mao, S. Sun, J. Yu, et Z. Yang, J. Ind. Eng. Chem., vol. 31, p. 283-290, nov. 2015, doi: 10.1016/j.jiec.2015.06.038.
- [2] J. Li, L. Li, W. Cheng, F. Wu, X. Lu, et Z. Li, *Chem. Eng. J.*, vol. 244, p. 59-67, mai 2014, doi: 10.1016/j.cej.2014.01.041.
- [3] Y. Liu et al., J. Catal., 2014, https://doi.org/10.1016/j.jcat.2013.10.019
- [4] J.-Y. Luo, M. Meng, Y.-Q. Zha, et L.-H. Guo, J. Phys. Chem. C, vol. 112, nº 23, p. 8694-8701, juin 2008, doi: 10.1021/jp800651k.

Communications orales

Thème : Bioraffinerie et économie circulaire

Lignin Catalytic Depolymerization and Demethylation in one-pot reaction

Hugo Lilti¹, Christophe Geantet¹, Dorothée Laurenti¹

¹IRCELYON, CNRS / Université Lyon 1, 2 avenue Albert Einstein, 69100, Villeurbanne, France.

Reducing our dependency towards fossil oil is one of the biggest challenges of the next decades. Lignin is the most abundant source of renewable aromatics molecules, but it is under-valorized compared to cellulose. Its low reactivity, high polydispersity and versatility makes lignin hard to use at a commercial scale. One way to valorize it entirely is in material applications like polymerization. Effectively, Lignin can partially replace intensively used polyol¹ in this field However, the use of lignin as polyol is not easy due to the variability of structure, size and OH groups concentration. Increasing the hydroxyl content by partial depolymerization of lignin can provide a solution². One way of increasing the hydroxyl content of lignin consists in demethylation of the methoxy groups which are abundant in the lignin structure. In the meantime, lignin can be partially depolymerized by breaking only the ether (mainly β -O-4, α -O-4) inter-unit bonds (IUB) which can represent up to 60% of all IUB in native lignin, and those ether bonds after cleavage will be converted into hydroxyls group³. Both reactions are based on the same processes, which is the cleavage of an ether bond. That is why the development of a one-step process to demethylate and partially depolymerize lignin might be an interesting approach. In this work, we investigate the effect of different heterogenous catalysts and operating reaction conditions on the hydroxyls content and oligomers distribution during the conversion of technical lignin. Lignin is usually depolymerized to monomers in hydrogen donor solvents (mainly alcohols) under reductive atmosphere with the help of hydrogenolizing catalysts (Ru/C, Pd/C, CoMo/Al₂0₃...)^{4,5} the ether IUB can be easily cleaved, whereas carbon-carbon IUB are partially preserved so that oligomers with only C-C bonds can be produced. According to the literature, the demethylation of the methoxy groups on the ortho position of the phenolic groups, would proceed thanks to the action of Lewis acid catalysts⁶. Methods using homogeneous catalysis and inorganic acid such as, ZnCl₂, acidic concentrated LiBr, or HBr were successfully employed. However, none of those catalysts are heterogeneous and sustainable.

Our strategy in this work is to perform a catalyst screening using many types of different solids having more or less acidic properties in addition of characterization of the OH-groups concentration and oligomers distribution. The conversion of lignin in the presence of alumina supported CoMoS catalyst showed a significant increase in hydroxyls content (table 1). The increase of the catechol moieties and the decrease of the methoxy groups are in good correlation (151% catechol increase and 42% -OMe decrease), showing that the targeted reaction of demethylation does occur. The depolymerized lignin shows a great decrease of β O4' IUB and other C-C bonds which should result in a decrease of the molecular mass, indeed observed in GPC analysis. As expected, the C-C bonds are less cleaved than the ether IUB as we can see with β 5', $\beta\beta$ ' and 55' moieties. Depolymerized lignin with CoMoO_x/Al catalyst shows more IUB than the lignin depolymerized with CoMoS/Al suggesting that the CoMoO_x hydrogenolyzing behavior is weaker than CoMoS. More, CoMoS/Al targets ether IUB cleavage as β O4' moieties show. The higher phenolic content observed with CoMoS could correspond to a limitation of HDO reaction in these operating conditions. The results show that the demethylation reaction has been successfully achieved and that sulfidation of the catalyst allows better performances. The objectives now are to compare with other catalysts and optimize the conditions that can be decisive for the targeted reactions.

Table 1. Quantification of aromatic OH (mmol/g), IUB (per 100 G units) and molecular mass (PS eq.) of lignin prior and after depolymerization (2h; 280 °C; total pressure: 60 bar; P_{H2} = 15 bar; catalyst: CoMoS/Al₂O₃ and CoMo/Al₂O₃); a) measured by ³¹P NMR; ^b) quantified by HSQC; c) measured by SEC.

	β -5 'ª	Syringyl +4-O-5'ª	5-5'ª	Guai acylª	Catecholª	phen olic ^a	Total Phenolic ^a	β-Ο- 4' ^ь	β- 5' ^b	β -β ' ^ь	OMe ^b	Mnc	Mw ^c
Kraft lignin	0,44	0,54	0,72	1,69	0,41	0,17	3,96	6,77	1,29	1,90	117,5	788	3240
CoMoS/AI	0,51	0,52	0,61	2,76	1,03	0,37	5,80	0,02	0,10	0,09	68,0	690	942
CoMo/Al	0,40	0,47	0,57	1,76	0,67	0,31	4,18	0,19	0,16	0,12	69,0	790	2390

(1) Luo, S.; Gao, L.; Guo, W. J Wood Sci 2020, 66 (1), 23.

⁽²⁾ Zhang, C. Acc. Chem. Res. 2020, 53 (2), 470–484.

⁽³⁾ Smit, A. T. P. C. A. ACS Sustainable Chem. Eng. 2023, 11 (15),

^{6070-6080.}

⁽⁴⁾ Ročnik, T. Chemical Engineering Journal 2022, 448, 137309.

⁽⁵⁾ Erdocia, X. ACS Sustainable Chem. Eng. 2016, 4 (3), 1373–1380.

⁽⁶⁾ Podschun, J. Reactive and Functional Polymers 2017, 119, 82–86.

Fonctionnalisation de la biomasse lignocellulosique pour la fabrication de bio liants

Nolwenn Daridon,¹ Christophe Geantet¹, Dorothée Laurenti¹,

¹IRCELYON, CNRS, Univ. Lyon1 UMR5256 2 Av. Albert Einstein, 69626, Villeurbanne, France.

L'objectif du projet Post-Oil Pavement (POP) est de développer de nouveaux bio-liants comme alternative aux bitumes d'origine pétrolière. En effet, la forte demande de bitume annuelle (11,3 millions de tonnes en Europe) va devoir faire face à la diminution de l'utilisation des ressources fossiles. Dans ce projet, nous travaillons sur la modification des propriétés rhéologiques d'huiles alimentaires usagées (HAU) en les transformant chimiquement par maléinisation, et en les mélangeant à de la lignine ou de la cellulose fonctionnalisée pour obtenir un bio-liant. Actuellement, des substituts biosourcés peuvent être utilisés pour remplacer partiellement le bitume. La lignine, par exemple, ayant des caractéristiques chimiques similaires aux molécules d'asphaltène présentes dans le bitume, peut être introduite, telle quelle, jusqu'à 12% en poids dans le liant sans altérer les propriétés rhéologiques de celui-ci, mais au-delà, des effets indésirables apparaissent.

Dans ce travail, notre objectif est de modifier la lignine et la cellulose par estérification ou éthérification des fonctions hydroxyles à l'aide de méthodes catalytiques. La fonctionnalisation de ces biomasses doit permettre de les rendre miscibles avec les HAU et doit donc faire intervenir des chaines carbonées assez longues pour augmenter leur lipophilicité (figure 1).

Une des réactions étudiées est la O-alkylation de la lignine par les

trialkylphosphates. Cette réaction^[1] utilise un catalyseur basique inorganique (K₂CO₃, 1 eq / mole de OH). En fonction des conditions opératoires, mais surtout de l'alkylphosphate et de la lignine utilisés, des lignines ayant des degrés de substitution des OH allant jusqu'à 77 % ont été obtenues. L'utilisation d'alkylphosphate à chaîne carbonées plus longues conduisent à des degrés de substitution plus faibles en raison de l'encombrement stérique. L'utilisation de la diisopropylamine permet d'obtenir une lignine substituée jusqu'à 35 %. Nous criblons désormais des catalyseurs hétérogènes tels que des amines supportées sur silice pour pouvoir nous affranchir de l'utilisation de arosses quantités de K₂CO₃ ou d'amine comme catalyseur homogène dans cette réaction.

La cellulose peut être transformée par transestérification directement avec les HAU. Avec cette méthode. la cellulose, est solubilisée au préalable dans un solvant dérivatisant DMSO/DBU/CO2^[2]. Ensuite, la cellulose solubilisée réagit avec les HAU lors de la réaction de transestérification. Le degré de substitution du solide obtenu est difficile à évaluer en raison de sa non-solubilité dans le solvant RMN utilisé pour déterminer le degré de substitution par phosphytilation (CDCl₃). Nous nous sommes donc intéressés à l'utilisation du trioléate de glycéryle, comme molécule modèle pour les HAU, afin de mieux comprendre le mécanisme de la réaction notamment avec des catalyseurs basigues hétérogènes tel que la diisopropylguanidine supportée sur silice possédant le même pKa que celui du DBU.

Les biomasses fonctionnalisées (15 wt%) sont ensuite incorporées aux HAU à 150°C pendant 3h. Dans la plupart des cas, une augmentation de la viscosité des HAU à température ambiante est observée, mais celle-ci varie en fonction de la réaction utilisée pour fonctionnaliser et de la longueur de la chaîne carbonée ester ou éther.

[1] A. Duval, L. Avérous, Green Chem. 22 (2020) 1671-1680.

[2] K.N. Onwukamike, S. Grelier, E. Grau, H. Cramail, M.A.R Meier, ACS Sustainable Chem. Eng, 6 (2018), 8826-8835

Figure 1 : Bio-liants obtenus à partir de HAU et biomasse fonctionnalisée

The conversion of fructose to 5-HMF catalyzed by faujasite zeolites: reaction mechanism and activity-properties relationships

Yuna Han, Gerhard Pirngruber, Kim Larmier*

IFP Energies nouvelles, Rond-point de l'échangeur de Solaize – BP 3 69360 Solaize, France

The conversion of biomass-based sugars into platform chemicals is a very topical issues of the recent years in chemical research and development. In particular, 5-HydroxyMethyl Furfural (5-HMF) is among the most widely targeted molecules. Despite this fact, to date no significant industrial process exists for its large scale production.¹ Heterogeneous Brønsted catalysts such as zeolites are well-known for being able to catalyze this reaction, however, debates still exist in the literature about the reaction mechanisms and optimal properties.² Herein, we explore the dehydration of fructose to 5-HMF for a series of faujasite zeolites (large pores). We examine both the reaction mechanism using a series of experimental methods, and we use a chemometric approach to decipher the activity-properties relationships of a large set of zeolites (about 30).

We first conducted a detailed kinetic study of the reaction using on of the catalysts, namely CBV760. Using a combination of HPLC, GC with derivatization, ¹³C NMR and *in situ* ¹H NMR, we could gain a detailed overview of the various species formed during the reaction and their interplay. 5-HMF does not appear kinetically as a primary products, instead, we could clearly detect two cyclic precursors (I1 and I2, see Figure 1), with no evidence for other, linear intermediates, showing that the cyclic pathway is favored with these catalysts. Then, we could observe the formation of a large variety of other species. One of the group of species, formed of both monomeric and dimeric derivatives of fructose, behave as transient species kinetically speaking, though are nor direct intermediates on the formation of 5-HMF. The second group behave as byproducts, and entail oligomeric derivatives, such as DiFructose diAnhydride (DFAs) or polymeric species such as humins. Based on our observations, we could build a kinetic model matching fairly well the experimental data points (see Figure 1) explaining the interplay between the different species. We then examined the catalytic activity of a set of about 30 faujasite zeolites with variying properties, including commercial samples (CBV600, CBV712, CBV720, CBV760) but also modified samples using desilication or dealumination.³ After full characterization of their properties (textural and structural properties, composition, nature and amount of the acidic sites - including probe molecule adsorption and ²⁷Al NMR), we employed a chemometric approach to explore the property-activity relationships. Our result show that, contrary to the expectations, the catalytic activity does not correlate to the total amount of Brønsted acidic sites. Instead, we observe a better correlation with the amount of accessible Brønsted acidic sites, determine using tri-tertButyl pyridine as a probe molecule, and also anticorrelation with the Lewis acid properties of the materials.

Figure 1. Evolution of concentration vs. time for the conversion of fructose (9 %wt) at 95 °C in DMSO catalyzed by CBV760. Dots are experimental points, solid lines are the result of kinetic modeling.

[1] R.-J. van Putten et al., Chemical Reviews 2013, 113, 1499-1597 [2] C. Chizallet et al., Chemical Reviews 2023, 123, 6107-6196

^[3] Y. Han et al., Micro. Meso. Mat. 2023, in press

Tuning acid-base properties of magnesium silicate catalysts for the gamma-valerolactone ring opening reaction

Albert Issa^{1,2}, Thomas Onfroy¹, Guillaume Laugel¹, Jean-François Hochepied², Hélène Lauron-Pernot^{*1}

¹Sorbonne Université, Laboratoire de Réactivité de Surface, 4 place Jussieu, 75005 Paris ²ENSTA UCP, IP Paris, 91120, Palaiseau France

Transesterification reactions play a pivotal role in a wide array of applications within the field of bio-sourced molecules valorization, for instance, transforming γ-valerolactone (GVL), a product derived from lignocellulosic biomass through a ring-opening reaction with methanol. This reaction results in the production of methyl-pentenoates, which are used as intermediates in the synthesis of Nylon (Figure 1(a)). Preliminary studies have evidenced the potential of magnesium silicates (MS), as catalysts for a model transesterification reaction [1]. The presence of Magnesium Silicate Hydrate (MSH) phase, often described as defectuous talc, has been identified as a key factor contributing to the catalytic activity. Recent work showed that co-precipitation performed with a micromixer allowed the preparation of MS materials with a wide range of Mg/Si ratios and acid-base properties [2]. In this contribution, we will evidence the impact of synthesis conditions on the acid-base properties of the materials, which will be characterized using the 2-methyl-but-3-yn-2-ol (MBOH) conversion test [3] (Figure 1(b)) as well as pyridine adsorption followed by FTIR, and on the activity of the materials in the GVL ring-opening reaction.

The co-precipitation of MS has been executed using the protocol described by Payan et al. using a micromixer. Figure 1(a) provides a comprehensive overview of the GVL ring-opening reaction, illustrating potential product formations. Notably, the crucial methyl pentenoates—MP3 and MP4— stand out as they serve as significant precursors for Nylon production. The undesirable products such as MP2, butene, and carboxylates are also shown, the latter two being recognized as decomposition products of GVL on acidic sites [4]. In Figure 1(b), the MBOH decomposition reaction and its potential product pathways are presented depending on the acidic or basic character of the catalyst. The ensuing selective yields are calculated based on product conversion along these distinct routes. The relationship between the MBOH's acidic yield and the total population of acidic sites, calculated from pyridine adsorption, is highlighted in Figure 1(c). A correlation between the two exists, illustrating an increase in acidic yield alongside the augmentation of the acidic site population. Figure 1(d) depicts the variation in selectivities among different reaction products as a function of

the acid route selectivity in MBOH the reaction. Notably, there's an inverse relationship observed in the selectivity of product MP4, decreasing with rising acidic vield. Conversely, MP3, MP2, and butene products are favored by an increasing of the acidic character of the catalysts. The research will explore the fine-tuning of catalyst synthesis conditions which allow the adjustment of selectivity in the desired products.

Figure 1. (a) the GVL ring-opening reaction, (b) the MBOH decomposition reaction [3], (c) the variation of acidic route yield (MBOH) and acid sites population (pyr) for 4 different samples, (d) the variation of products selectivities as a function of acid

- [1] L. Lin et al., Catalysis Science and Technology, 2019, 9, 6072-6084
- [2] F. Payan et al., Catalysts, 2023, 13, 1393
- [3] Lauron-Pernot et al., Catalysis Reviews, 2006, 48, 315-361
- [4] Bond et al., Energy & Environmental Science, 2012, 7, 1500-1523

Organocatalytic conversion of glycerol to glycerol carbonate using CO₂

and acetonitrile

Taha Amine Chibane^{1,2}, ¹ Raphaël Mereau², Thierry Tassaing², Karine De Oliveira Vigier¹

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR 7285 CNRS, 4 rue Michel Brunet, TSA 71106, 86073 Poitiers France

²Institut des Sciences Moléculaires (ISM), Université Bordeaux, UMR 5255 CNRS, 351 cours de la Libération, 33405 Talence France

To meet the requirement of a circular economy, biodiesel has gained much industrial attention as a renewable energy. Nevertheless, a substantial quantity of glycerol is produced as a by-product [1]. Transforming low-value glycerol into high-value derivatives is essential. CO₂ on the other hand is a major greenhouse gas that contributes significantly towards climatic change. It is, however, a cheap source of carbon that could be used. Thus, transforming these two abundant wastes into valuable products such as glycerol carbonate, is an attractive and sustainable route with an overall atom economy of 87 % and only water as a by-product. Apart from the direct utilization of glycerol carbonate thanks to its low toxicity, high biodegradability, and physical properties, it can be used as an intermediate due to its two different functional groups. The direct carboxylation of glycerol is a thermodynamically limited reaction due to the low reactivity of substrates which leads to a low vield. To circumvent this drawback, both homogeneous and heterogeneous catalysts (Bu₂SnO. K₂CO₃, CeO₂, etc.) used in combination with dehydrating systems were developed to shift the equilibrium towards the desired product [2]. The present research aims to provide a detailed mechanistic understanding of the direct synthesis of glycerol carbonate from glycerol and carbon dioxide using a Lewis base catalyst (DBU, TBD) and acetonitrile as a reactive dehydration agent (figure 1).

Figure 1: Direct carboxylation of glycerol with CO2 using acetonitrile as a reactive dehydrating agent.

The effect of important reaction parameters that could influence the conversion of glycerol and the selectivity of glycerol carbonate such as reaction time, temperature, CO₂ pressure, amounts of catalyst, and dehydration agent has been studied using a high-pressure batch reactor to find the optimum conditions. To investigate the reaction network in greater detail, in situ ATR-IR spectroscopy monitoring will be carried out which will enable us to identify reaction intermediates and to determine how the kinetic profiles, the reaction yields, and the selectivity of the reaction evolves with various parameters. Density Functional Theory (DFT) was also performed in this work to understand and validate the reaction pathways proposed via catalytic tests and ATR-IR monitoring, providing valuable information for further improvement of the CO₂-Glycerol conversion.

C.A.G. Quispe, C.J.R. Coronado, J.A. Carvalho, Renew. Sust. Energ. Rev., 27 (2013) 475-493.
 D. Procopio, M.L. Di Gioia, Catalysts, 12 (2022) 23.

Optimization in the deoxygenation of m-cresol by creating Ni-Nb interfaces

Camila A. Teles^{1,*}, Carmen Ciotonea², Sébastien Royer³, Frédéric Richard¹

¹ Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, UMR 7285, rue Michel Brunet, BP633, 86022 Poitiers, France.

² Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Intéractions sur le Vivant-UCEIV, UR4492, SFR Condorcet FR CNRS 3417, 59140 Dunkerque, France.

³ Université de Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.

*camila.abreu.teles@univ-poitiers.fr

Introduction. The hydrodeoxygenation (HDO) reaction of m-cresol, a model molecule representative of the lignin-derived bio-oil, is strongly affected by the type of catalyst. Hydrogenation of m-cresol yielding oxygenated compounds such as ketone and alcohol is promoted by supported metals while deoxygenation toward toluene can be promoted by a metal-oxophilic site interface [1]. C-C hydrogenolysis can also takes place by using metals such as Ni [2]. In this work we studied the effect of the interfacial sites between Ni particles and NbO_x species to promote deoxygenation and minimize hydrogenolysis, by preparing a series of Ni-NbO_x dispersed on SBA-15 catalysts and testing in the HDO reaction of m-cresol at gas phase.

Experimental/methodology. SBA-15 was prepared by conventional templating method. The Ni-Nb/SBA-15 samples, varying the content of Ni and Nb between 2.5-5 wt.% were prepared by melting infiltration method, followed by thermal treatment at 500 °C for 6 h. The samples were characterized by N₂ physisorption, XRD, H₂-TPR, STEM and IV-pyridine. The HDO of m-cresol was performed in a fixed-bed reactor operating at 300 °C and atmospheric pressure. The cataysts were reduced *in situ* at 500 °C, 1 h, under pure H₂ flow before reaction. Reactant and reaction products were analyzed by gas chromatography.

Results and discussion. By comparing the product distribution obtained at low level of conversion for all catalysts, important differences were observed depending on the catalyst composition. Oxygenated produts such as 3-methylcyclohexanone and 3-methylcyclohexanol (50 and 19 % of selectivity, respectively) were the major products obtained over Ni/SBA-15, with minor production of toluene (22 %) and phenol (6 %). By introducing niobium to the catalyst, the selectivity to these oxygenated products continuouly

decreased while increasing the selectivity to deoxygenated products such as toluene, methylcyclohexenes and methylcyclohexane, with a maximum being observed for a catalyst containing a Nb/Ni molar ratio of 1 (72 % of toluene, 12 % of methylcylohexenes and 6 % of methylcyclohexane). Besides that, phenol is not further detected. The formation of such products can be explained by three main reaction routes: (i) the direct deoxygenation (DDO) to yield toluene, (ii) hydrogenation (HYD) of the aromation ring yielding the ketone and alcohol followed by dehydration to the alkanes which may be further hydrogenated to the respective alkane, and (iii) hydrogenolysis (HYG) of the methyl group yielding

phenol. The addition of Nb close to the Ni particles, as evidenced by the characterization results, significantly increased the DDO rate up to 7-fold while eliminating the hydrogenolysis pathway (Figure 1). Thus, the results clearly evidenced that deoxyenation of m-cresol over Ni-based catalysts can be optimized by creating interfacial sites with oxophilic species such as NbO_x.

References

[1] Teles, C.A.; Rabelo-Neto, R.C.; Duong, N.; Quiroz, J.; Camargo P.H.C.; Jacobs, G.; Resasco, D.; Noronha, F.B. *Catalysis Apply B: Environmental*, **2020**, 277, 119238.

[2] Yang, F.; Liu, D.; Zhao, Y.; Wang, H.; Han, J.; Ge, G.; Zhu, X. ACS Catalysis, 2018, 8, 1672-1682.

Développement d'un catalyseur Ti-SBA-15 de désulfuration oxydative pour la valorisation du biodiesel issu d'huiles alimentaires usagées

Adisak Guntida¹, Françoise Maugé¹, Juliana Aparicio², Karine Thomas^{1*}

1 Laboratoire Catalyse et Spectrochimie (LCS), UNICAEN, Normandie Universite, ENSICAEN, Caen, France

2 DIELIX - Sarpi Veolia, 727 Rte du Hazay, 78520 Limay, France

La production de biodiesel à partir de déchets tels que les huiles alimentaires usagées (HAU) est l'une des voies étudiées pour limiter l'utilisation les carburants d'origine. Si ce biocarburant de seconde génération est facilement incorporable au gasoil (B0) pour former le B7, son utilisation seul en tant que B100 est plus difficile car il ne satisfait pas aux normes demandées telles que, par exemple, la teneur en soufre de 10 ppm et la température limite de filtrabilité (TLF) de -10°C. Lors de la transformation des HAU en biodiesel, seule une partie de ce soufre est éliminée, le biodiesel contenant encore entre 10 et 500 ppm selon la teneur de la charge de départ. L'objectif de l'étude est la désulfurisation de ces biocarburants par désulfuration oxydative (ODS), méthode permettant de travailler dans des conditions douces de température et de pression afin de préserver la composition du biodiesel [1,2]. L'oxydation des composés organosulfurés forment alors des composés sulfoxydes/sulfones, qui sont très polaires et peuvent donc être facilement éliminés par des solvants polaires. A cette fin, les matériaux mésoporeux de type SBA-15 contenant du titane ont montré une excellente activité catalytique en raison d'un accès plus large au site actif catalytique [3].

Partie expérimentale

Différents catalyseurs xTi - SBA-15 contenant des teneurs en poids en titane « x » de 0,5 %, 2 %, 6 % et 12 % ont été préparés à l'aide d'une méthode de synthèse en une étape [adapted from 4]. La teneur exacte en Ti a été mesurée par ICP. L'acidité des solides a été mesurée par adsorption de pyridine, lutidine et CO suivi par FTIR. Pour comparaison un catalyseur 2% Ti/ SBA-15 a été préparé par imprégnation de butoxyde de titane. La réaction de désulfuration

oxydante (ODS) a été menée en batch à 80°C avec une solution modèle (10.000 ppm de DBT dans du noctane) avec un rapport molaire H_2O_2/DBT de 4:1 ainsi que par ATR-IR sous flux.

Résultats et Discussion

L'ajout de titane (IV) acetylacetonate lors de la synthèse de la SBA-15 ne modifie pas la structure mésoporeuse hexagonale ordonnée de la SBA-15 (BET et XRD). De plus, l'incorporation d'ions Ti dans la structure mésoporeuse SBA-15 a été confirmée par ²⁹Si MAS-NMR. L'adsorption de pyridine confirme la formation de site de Lewis Ti⁴⁺ sur les deux types de catalyseurs mais l'adsorption de CO à basse température identifie deux sites distincts de phases actives Ti⁴⁺ sur les catalyseurs xTi - SBA-15: l'un associé à l'anatase cristalline de TiO₂ et l'autre associé au Ti⁴⁺ isolé. Le

Figure 1 : Conversion du DBT (10 000ppm / n-octane) en présence de H_2O_2 ; m_{catal} = 250 mg; V= 10 mL

catalyseur imprégné 2% Ti/ SBA-15 présente ainsi l'activité la plus faible.

Le catalyseur le plus actif pour la réaction est le catalyseur présentant le plus d'espèces Ti⁴⁺ isolées c'est-à-dire le catalyseur «2Ti-SBA-15».

- [1] Boshagh, F. et al. Energy & Fuels, 36 (2022), 98-132
- [2] Kim. T et al., ChemCatChem. 4 (2012) 687-697
- [3] Crucianelli, M. et al. Catalysts, 9 (2019) 984-1014
- [4] Guillet-Nicolas, R., et al., J. Phys. Chem. C 121(44) (2017), 24505-24526

Posters

Selective glucose oxidation to glucuronic acid using bimetallic catalysts: doping effect

Maher ELHallal¹, Vitaly V. Ordomski¹, Mickael Capron¹

¹UCCS - UMR CNRS 818, Université de Lille, 59655 Villeneuve d'Ascq cedex France

The study aims to prepare heterogeneous catalysts based on supported metals, compare their activity, and optimize reaction parameters for the conversion of glucose into glucuronic acid, a crucial precursor for biopolymers and pharmaceuticals. The synthesis method involves micro emulsion [1] and the use of Au and Pt based catalysts, as well as AuPt bimetallic catalysts supported on TiO₂. A series of Au_xPt_{1-x}(Cs)/TiO₂ with a total metal content of 2.5 wt% has been prepared. The addition of a dopant, cesium, is found to increase the conversion and selectivity towards glucuronic acid. This approach is significant in addressing the need for sustainable methods to produce high-value molecules from renewable feedstocks, such as glucose, and reduce reliance on petroleum-based fuels and chemicals.

The addition of a dopant, such as cesium, to the Au and Pt based catalysts and AuPt bimetallic catalysts supported on TiO_2 can significantly impact the conversion and selectivity of the catalysts in the production of glucuronic acid. The study demonstrates the potential of this approach in addressing the challenges associated with the reactivity of glucose and the complex chemical pathways involved in its conversion to glucuronic acid. The use of renewable feedstocks, like glucose, for the production of high-value molecules is a critical step towards a more sustainable and environmentally friendly chemical industry.

Figure 1, shows the glucose conversion and the selectivity of gluconic acid and glucuronic

acid, as well as the yield of glucuronic acid for different catalysts. The Au₇₅-Pt₂₅/TiO₂ catalyst exhibited the highest glucose conversion, exceeding 90% in 4 hours of reaction. selectivity was greater for gluconic acid (76%) than for glucuronic acid (33%). The Au/TiO₂ catalyst showed better results in terms of glucose conversion (63%) and glucuronic acid selectivity (45%). The Pt/TiO₂ catalyst showed lower activity (39%) but high selectivity toward glucuronic acid (43%). Increasing the weight percentage of gold in the the bimetallic catalyst increased conversion rate but decreased the selectivity toward glucuronic acid. The

supported catalysts.

study also found that cesium-promoted gold nanoparticles can selectively oxidize glucose to glucuronic acid. Gold-based catalysts doped with cesium show higher activity (99%), while platinum-based catalysts show higher selectivity (75%). The use of heterogeneous catalysis for the preparation of glucuronic acid in high yield has been underreported. Our catalysts are therefore of great interest for liquid phase oxidation processes. Optimization of the operating conditions, as well as kinetic studies was also investigated.

1. R. Wojcieszak, I. M. Cuccovia, M. A. Silva, et L. M. Rossi, « Selective oxidation of glucose to glucuronic acid by cesium-promoted gold nanoparticle catalyst », *J. Mol. Catal. Chem.*, vol. 422, p. 35-42, oct. 2016,

Cascade de réactions en phase aqueuse: étude des synergies et antagonismes de systèmes catalytiques hybrides

Hector MOINE¹, Léa VILCOCQ¹, Régis PHILIPPE¹, Pascal FONGARLAND¹

¹CP2M, CNRS/UCBL/CPE Lyon, 43 boulevard du 11 Novembre 1918, 69616 VILLEURBANNE, France

Les initiatives visant à valoriser la biomasse végétale ont démontré la possibilité de repenser l'industrie chimique future autour de ressources de carbone non fossiles pour la production de molécules clés de l'industrie chimique mais également de l'industrie du plastique. Cette transition a des implications significatives pour cette dernière, où les monomères, précurseurs des matières plastiques, pourront être dérivés de ressources de carbone fossiles. Un exemple est le 2,5-furandicarboxylique, ou FDCA, il est utilisé comme composant clé dans la production de polyéthylène furanoate (PEF), un polymère alternatif au polyéthylène téréphtalate (PET) largement employé dans la fabrication de bouteilles en plastique. Cette utilisation du FDCA marque ainsi une transition vers des matériaux plastiques plus durables et respectueux de l'environnement.¹

Des études ont montré qu'une voie réactionnelle partant du glucose est réalisable.² Cependant pour rester dans une démarche de chimie verte et de développement durable, sans concurrencer l'industrie alimentaire, on partira du xylose pour l'obtention du FDCA. Ce poster présentera la méthodologie adoptée pour la conceptualisation d'un procédé enchainant 3 étapes catalytiques de natures différentes en phase aqueuse :

1) Catalyse homogène, utilisation du CO₂ sous pression pour acidifier le milieu aqueux

2) Oxydation aérobie du furfural sur un catalyseur hétérogène

3) Catalyse enzymatique de carboxylation³

La thèse se penchera sur la faisabilité d'un tel procédé, par l'étude préliminaire de chaque étape indépendamment. Puis par le couplage en séquentiel des différentes étapes. Ainsi une investigation sera menée sur la combinaison de ces systèmes catalytiques.

De manière expérimentale, les effets de synergie et/ou d'antagonisme entre les différents catalyseurs pourront être mis en évidence, dans le but de réunir les domaines de la chimie et de la biochimie autour des problématiques liées aux développement de nouveau systèmes multicatalytiques.⁴

¹ Loos et al., « A Perspective on PEF Synthesis, Properties, and End-Life ».

² Ning et al., « Recent Advances in the Valorization of Plant Biomass ».

³ Payne et al., « Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA) ».

⁴ Heuson et Dumeignil, « The Various Levels of Integration of Chemo- and Bio-Catalysis towards Hybrid Catalysis ».

Enhancing direct deoxygenation of m-cresol by promoting small Ni nanoparticles supported on SBA-15 with Cu

Roger Deplazes 1, @, Camila Abreu Teles 2, Carmen Ciotonea 3, Frédéric Richard 2, Nadia Canilho 4, Sebastien Royer 1

1: Unité de Catalyse et Chimie du Solide - UMR 8181, Université de Lille - Sciences et Technologies

2 : Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Centre National de la Recherche Scientifique

3 : Unité de chimie Environnementale et interactions sur le vivant, Université du Littoral Côte d'Opale

4 : Laboratoire Lorrain de Chimie Moléculaire

Université de Lorraine

The design of active, selective, robust and low-cost catalysts for the catalytic upgrading of the bio-oil obtained from the pyrolysis of biomass, is the key for the consolidation of this liquid as a transportation bio-fuel. Despite great advances in understanding the relationship between catalyst formulation and properties with deoxygenation performance, non-noble metals-based catalysts still present low performance compared to noble-metals ones [1]. Recently, we have demonstrated that controlling the particle size of Ni supported catalysts can significantly affects the conversion and product selectivity during HDO reaction of m-cresol, a model compound representative of lignin [2]. Indeed, larger particles favor hydrogenation and hydrogenolysis steps while small particles favor deoxygenation toward toluene. With the aim of further improving catalyst activity while retaining a good selectivity toward deoxygenation, the present work proposes to investigate a series of Ni promoted with Cu dispersed on SBA-15 catalysts, for the HDO reaction of m-cresol.

A series of xNiyCu/SBA-15 (x and y varying between 2.5 to 10 wt.%) samples were prepared by two different methodologies. Ni/SBA was prepared by melting infiltration method, as previously reported [2]. NiCu/SBA catalysts were prepared by combustion-impregnation method using glycine as complexing agent. All samples were calcined and reduced at 600 °C under hydrogen flow before being tested. The HDO of m-cresol was performed in vapor phase at 300 °C and atmospheric pressure.

On the TEM images of the reduced samples, the presence of very small nanoparticles (average of 2 nm for all samples) is clearly observed. The particles seem to be confined in the support microporosity and EDX mapping confirms a good dispersion and close contact of both metals throughout the support. The interaction between Ni and Cu is highlighted by the TPR profiles, in which the addition of Cu significantly decreases the reduction temperature of Ni. In catalytic HDO tests, monometallic Ni/SBA catalyst presented higher selectivity to toluene (73 %) compared to Cu/SBA (only 32 %), and a total reaction rate of 33 times higher. For the bimetallic NiCu/SBA catalysts, the selectivity to toluene is almost the same (around 80 %), indicating that the addition of Cu does not modify the main reaction pathway promoted by Ni. However, the reaction rates strongly increase with introduction of Cu (up to 4.5 times) clearly showing the promotor effect of Cu in the Ni deoxygenation activity.

[1] A.S. Ouedraogo, P.R. Bhoi, J. Clean Prod. 2020, 253, 119957.

[2] C.A. Teles, C. Ciotonea, A. Le Valant, C. Canaff, J. Dhainaut, F.B. Noronha, F. Richard, S. Royer, App. Catal. B, 2023, 338, 123030.

Préparation et caractérisation du catalyseur : nanoparticules du Rhodium

supportées par CeO₂-La₂O₃ préparé dans une solution de [pyrrolidinium

heptanoate] Application : production d'hydrogène par photo catalyse

Bachira Soukhal¹ Meriem Anouti¹, Aicha Benamar¹, Mohamed Trari³.

¹Laboratoire1, Laboratoire de matériaux et application à l'environnement Faculté de Chimie (USTHB), BP32, 16111, Alger, Algérie.

²Laboratoire2, Laboratoire PCMB (EA 4244), équipe Chimie-physique des Interfaces et des Milieux Electrolytiques (CIME), Parc de Grandmont, 37200 Tours, France

³Laboratoire de Stockage et Valorisation des Energies Renouvelables Faculté de Chimie (USTHB), BP32, 16111, Alger, Algérie.

Résumé :

Le carboxylate d'alkyle de pyrrolidinium [Pyrr][C₇H₁₅COO] a été synthétisé par la réaction de neutralisation de la pyrrolidine par l'acide de Bronsted correspondant (rapport molaire amine/acide = 1/1) selon la technique décrite par [1-2].

Dans le cadre du développement de nouveaux catalyseurs hétérogènes, il nous a paru intéressant de préparer des catalyseurs métalliques supportés par le choix d'un liquide ionique (Li) comme solvant du sel précurseur, plus particulièrement la pyrrolidinium heptanoate, comme alternative aux Li. Notre objectif principal est d'améliorer les performances catalytiques en production d'hydrogène par la décomposition de l'eau par photo catalyse en présence d'un catalyseur métallique supporté 1% RhCeO₂-La₂O₃

Pour cela, deux systèmes ont été étudiés. Dans le premier modèle est la dissolution du sel précurseur (Rh Cl₃ 6H₂O) dans l'eau déminéralisée. Dans le second système, le sel précurseur est dissout dans une solution de pyrrolydinium hépanoate. La technique d'imprégnation a été adoptée pour la préparation de ces matériaux [2].

Les catalyseurs notés respectivement 1RhCeLa et 1RhCeLa(Li) ont été caractérisés par les différentes techniques physico-chimiques à savoir : Réduction en température programmée (RTP), Chimisorption de l'hydrogène(Hc), DRX, ATG-ATD, MEB et MET.

L'analyse par cycle volta métrique de l'électrode 1RhCeLa(Li) préparée et qui renferme 40% en poids du catalyseur [3] a été étudiée dans l'électrolyte neutre de Na2SO3 0,1M.

Le catalyseur 1RhCeLa(Li) a révélé une grande dispersion de Rh sur le support et une propriété très capacitive par rapport à l'échantillon 1RhCeLa par conséquent une meilleure performance photo catalytique en production d'hydrogène par dissociation de l'eau a été obtenue.

Mot clés : Liquide ionique, photo catalyse, cérium, Rhodium, hydrogène

- [1]. Anouti, M., Jones, J., Boisset, A., Jacquemin, J., Caillon-Caravanier, M., & Lemordant, D. (2009). Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. *Journal of Colloid and Interface Science*, 340(1), 104-111.
- [2] .M. Anouti, M. Caillon-Caravanier, C. Le Floch, D. Lemordant, J. Phys. Chem. B 112 (2008) 9406.
- [3]. Benaziza, B., Sadi, F., Hellaili, N., Zaghrioui, M., Benamar, A., & Trari, M. (2023). H₂ evolution by water splitting on Rh/La₂O₃. International Journal of Hydrogen Energy, 48(48), 18201-18210.

Activity of Composite-Based Electride Materials for Ammonia Synthesis

Aissam ADDOU^{*1,2}, Said Laassiri¹, Jean-Philippe Dacquin², Sébastien Royer².

¹Chemical & Biochemical Sciences, Green process Engineering (CBS), Mohammed VI polytechnic university, UM6P, 43150, Benguerir, Morocco.

²Université de Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France.

*Corresponding author email: Aissam.ADDOU@univ-lille.fr

The declining cost of electricity from renewable sources has facilitated cost-effective green hydrogen production through water electrolysis, a pivotal step in enabling green ammonia generation. However, the intermittent nature of renewable energy necessitates the development of more efficient catalysts capable of coping with intermittency while maintaining high catalytic activity under mild conditions. Over the past decades, electride-based materials have emerged as highly active and stable catalysts for ammonia synthesis under mild conditions. Specifically, Ru promoted inorganic electrides (such as $[Ca_{24}AI_{28}O_{64}]^{4+}:(O^{2-})_{2-x}(e^{-})_{2x}$ ($0 \le x \le 2$), Ca_2NH , $BaO_xN_y:e^{-}_z$, Ba_2N as 2D electride, and BaH_2 as a surface electride) have demonstrated their ability to promote ammonia synthesis reaction at low temperatures with low apparent activation energies. This is attributed to the strong electron donation from the (nucleus-free) anionic electrons on the low work function (WF) surface [1]. While the intrinsic nature of electrides affords to boost N2 activation in ammonia synthesis over a Co catalyst without additional additives, their sensitivity to moisture and air poses challenges for industrial applications. Recently, BaAl₂O_{4-x}H_v has been applied as a 3D network structure oxyhydride electride, demonstrating the promotion of ammonia synthesis over both noble (665 mmol $g_{Ru}^{-1}h^{-1}$ at 340°C and 0.90 MPa) and non-noble metals (500 mmol $g_{Co}^{-1}h^{-1}$ at 340°C and 0.90 MPa) [2]. However, electride synthesis involves complex synthesis procedures, including high-temperature reduction or the use of reducing agents such as AI, Ca, and metal hydrides like BaH₂, resulting in materials with limited accessible surface. This study aims to develop a novel approach for preparing and activating electrides with high surface area, elevated electron density, and controlled particle size. We successfully synthesized the composite electride BaAl₂O_{4-x}e⁻_x using the citrate sol-gel method under nitrogen gas. This electride demonstrates excellent resistance to ambient air, featuring an electron concentration of 5.72 10²¹ cm⁻³ and a surface area of 41 m² g⁻¹. Silica doping enhances the electron concentration in BaAl_{1.8}Si_{0.2}O_{4-x}e⁻_x to 8.2 10²¹ cm⁻³, coupled with a surface area of 23 m² g⁻¹. Interestingly, as shown in Figure 1, the catalytic performances measured at 0.1 MPa for selected samples reveal slightly improved activity in the silica-doped barium-based electride BaAl₂O_{4-x}e_x, achieving a rate of 1940 µmol g_{cat}⁻¹h⁻¹ at 350°C and 0.1 MPa, surpassing the non-doped electride rate (1566 μ mol g_{cat}⁻¹h⁻¹).

Figure 1 : (a) Temperature dependence of the NH₃ synthesis rates over Ru/BaAl₂O₄, and Ru/BaAl_{1.8}Si_{0.2}O₄ catalysts under 0.1 MPa. (c) Stability test for NH₃ synthesis over Ru/BaAl₂O₄, and Ru/BaAl_{1.8}Si_{0.2}O₄ at 370 °C, 0.1 MPa

[1] H. Hosono, and M. Kitano. "Advances in materials and applications of inorganic electrides." *Chemical Reviews* 121.5 (2021), p. 3121-3185.

[2] Y. Jiang, et al. "Boosted Activity of Cobalt Catalysts for Ammonia Synthesis with BaAl₂O_{4-x}H_y Electrides." *Journal of the American Chemical Society* 145.19 (2023), p. 10669-10680.

sélective de NO par H₂

Lucas Diot^{1*}, Laurence Retailleau¹, Sonia Gil¹, Philippe Vernoux¹

¹Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69262, Villeurbanne, France

Il devient urgent de réduire les émissions de gaz à effet de serre (GES) responsables du réchauffement climatique notamment ceux des véhicules lourds représentant 25% des GES [1]. L'hydrogène vert apparaît donc comme une solution prometteuse. Il peut servir de carburant propre pour les moteurs à combustion interne à H₂ (H₂-ICE), alimentant les camions et les bus sans aucune émission de CO₂. Cependant, la combustion thermique du H₂ avec l'air donne lieu à des émissions d'oxydes d'azote (NO_x). Une solution rentable et passive implique la réduction catalytique sélective (H₂-SCR) des NO_x en N₂ en utilisant l'H₂ imbrûlé dans les gaz d'échappement. Les catalyseurs les plus étudiés sont le Pt et le Pd car ils sont très actifs à basse température mais produisent du N₂O [2]. Afin d'obtenir de meilleures performances, cette étude propose l'utilisation de pérovskites La_{1-x}Sr_xTiO₃ dopées au Fe et au Ni pour la H₂-SCR en excès d'O₂ très peu décrit dans la littérature [3]. Dans cette étude, leur composition a été ajustée pour produire des sites multifonctionnels (acides, basiques et hydrogénants) qui pourraient favoriser une voie catalytique plus sélective. Des cations Fe et Ni ont été insérés dans les sites B pour subir une exsolution redox au cours d'une étape de réduction. Selon la littérature, ce processus peut produire de petites nanoparticules (NPs) bien ancrées (<10 nm) [4], très

résistantes au frittage. Ces NPs peuvent hydrogéner les espèces adsorbées en intermédiaires $NH_{x,ads}$, qui seront ensuite protonés pour produire du N_2 .

Les catalyseurs $La_{0.52}Sr_{0.22}Ti_{0.94}Fe_{0.06}O_3$ (LS₂₂TFe), La_{0.52}Sr_{0.28}Ti_{0.94}Fe_{0.06}O₃ (LS₂₈TFe) et La_{0.52}Sr_{0.28}Ti_{0.94}Fe_{0.06}O₃ (LS₂₈TNi) avec une structure pérovskite cubique monophasée (Pm3m) ont été synthétisés par la méthode Pechini [5]. L'activité catalytique pour la H₂-SCR a été étudiée avant et après une étape de réduction, qui a été utilisée pour déclencher l'exsolution redox du Fe et du Ni. Le mélange réactionnel était composé de 400 ppm de NO, 1% de H₂ et 0,5-2% d'O₂ avec un débit total de 150 mL/min (VVH = 90000 h⁻¹).

La Figure 1 montre la conversion des NO_x en fonction de la température avant l'étape de réduction et en excès d'oxygène (O₂/H₂=2). La pérovskite LS₂₈TFe a présenté les performances les plus élevées (conversion maximale de 50 % à 320°C) dans une fenêtre d'activité relativement large en température (250-400°C). Ce catalyseur a principalement produit du N₂ (rendement=23%) et du NH₃ (20%) avec une très faible production de N₂O (7%). La production élevée de NH₃ suggère que le LS28TFe ne disposait pas d'un nombre suffisant de sites acides pour protoner les intermédiaires NH_x en vue d'une production efficace de N₂. L'acidité des pérovskites en imprégnant du W (sites acides) sera étudiée afin d'augmenter la sélectivité en N₂ en utilisant le NH₃ produit *in-situ*. En outre, la teneur en Sr plus élevée dans le LS₂₈TFe par rapport au LS₂₂TFe semble être bénéfique. En revanche, bien que le LS₂₈TNi ne soit pas actif avant réduction, une réduction à 800°C pendant 1 h dans 1% de H₂ a fortement amélioré la conversion de NO_x, atteignant 85% à 350°C avec un rendement de NH₃ de 65%. Cette amélioration a été attribuée à la formation de NPs de Ni (4-20 nm) à la surface par exsolution redox. Inversement, pour le LS₂₈TFe, les performances catalytiques éteint défavorisée après une étape de réduction similaire, coïncidant avec l'observation de grosses NPs de Fe (20-150 nm).

[1] J. Allwood, J. Cullen, Jonathan, Aluminium and Carbon: Alternative Strategies for Meeting the 2050 Carbon Emission Targets, 2019.

[2] S. M. Farhan, W. Pan, C. Zhijian, Y. JianJun, Fuel 355 (2024) 129364.

[3] Y. Luo, X. Wang, Q. Qian, Q. Chen, Int. J. Hydrog. Energy 39 (2014) 15836.

- [4] J. Zhang, M.R. Gao, J.L. Luo, Chem. Mater. 32 (2020) 5424–5441.
- [5] M.M. Milanova, M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, J. Alloys Compd. 242 (1996) 6.

L'exsolution des particules de Ni présents dans les phyllosilicates, bonne ou mauvaise stratégie pour la réaction de méthanation ?

Manon Grégoire¹, Carmen Ciotonea^{1, 2}, Sébastien Royer², Edmond Abi-Aad¹, Christophe Poupin¹

¹Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV, Univ. Littoral Côte

d'Opale, UR 4492, 59140, Dunkerque, France

²Unité de Catalyse et Chimie du Solide, UCCS, Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, 59000, Lille, France

Le CO₂, l'un des principaux gaz à effet de serre, a atteint des valeurs d'émission critiques et il devient urgent de trouver une solution pour réduire ces émissions afin de contrôler le réchauffement climatique. Le procédé de méthanation, une voie prometteuse pour limiter les émissions de CO₂, converge également vers le remplacement des sources fossiles de gaz naturel. De plus, cette réaction transforme l'hydrogène de préférence renouvelable, un vecteur énergétique important, difficile à stocker et à transporter, en un composé énergétique utilisable (CH₄) grâce au réseau de distribution déjà existant. La réduction thermocatalytique du CO₂ est réalisée en utilisant des catalyseurs supportés à base de métaux nobles (Ru, Rh) ou de métaux de transition (Ni, Co) avec une prédilection pour les catalyseurs à base de Ni [1]. La clé pour obtenir des performances élevées en termes d'activité et de sélectivité réside dans la formulation du catalyseur. Un catalyseur efficace doit présenter une forte dispersion de nanoparticules de nickel (NP) résistantes au frittage et à l'accumulation de coke, deux phénomènes à l'origine de la désactivation du catalyseur [2]. Dans cette étude, nous allons rapporter la préparation de catalyseurs Ni⁰ poreux supportés par de la silice obtenue par exsolution réductrice à partir de phyllosilicates.

Lors de ces travaux, nous avons synthétisé le matériau 20%Ni/Phyllosilicate. Le matériau calciné présente bien les phases phyllosilicate pures observées par DRX et S/TEM-HAADF sans formation de NiO externe. Les profils TPR montrent la réduction du Ni à des températures comprises entre 500 °C et 800 °C, typiques des phyllosilicates. Le matériau 20%Ni/Phyllosilicate a donc été réduit pendant 2h à des températures entre 500°C et 800°C. Grâce à l'ensemble des caractérisations physico-chimiques (analyse chimique, microscopie, XPS), il a été démontré que l'augmentation de la température facilite la destruction des filaments rendant ainsi les particules de

Ni⁰ plus accessibles sans pour autant induire un changement significatif de la taille des particules de Ni⁰ (3,4 nm à 500°C et un degré de réduction du Ni de 21 %, contre 4,2 nm à 800°C et un degré de réduction du Ni de 100 %). Les tests catalytiques montrent que le matériau réduit à 800°C permet un rendement en CH₄ plus élévé et à plus basse température que le matériau réduit à 500°C. Cependant, pour une application industrielle, la température de réduction doit être abaissée. Pour cela, le matériau a été réduit à 500°C pendant 6h afin de réaliser une exsolution des particules de Ni (figure 1). Les résultats obtenus ne sont pas à la hauteur de nos espérances. L'explication de ces résultats ainsi que les pistes d'amélioration pour atteindre des activités similaires à une réduction à haute température seront abordées lors de la présentation.

Figure 1 : Rendement en CH₄ en fonction de la température pour 20%Ni/Phyllo réduit à 800°C, réduit à 500°C et réduit à 500°C pendant 6h

[1] J. Ducamp et al.Comptes Rendus Chimie vol. 21, pp 427–469, 2018

[2] P. Burattin et al. J. Phys. Chem. B, vol. 101, no. 36, pp. 7060–7074, 1997

Development of Perovskite based Oxygen Carriers for Hydrogen (H₂) Production via Chemical Looping Methane (CH₄) Reforming

Ganesh JABOTRA^{1,2}, Jean-Philippe Dacquin¹, Axel Löfberg¹, Sébastien Royer¹, Sudhanshu Sharma²

 Unité de Catalyse et Chimie du Solide – UCCS – UMR 8181, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, F-59000 Lille, France.
 Indian Institute of Technology Gandhinagar (IITGN), Gujarat, 382355, Palaj, India.

Chemical Looping Methane Reforming (CL-MR) is an attractive technique for hydrogen. Production [1]. In the cyclic process, the reforming reaction over an oxidic material, acting as an oxygen carrier, operates separately from the further reoxidation of the solid using CO2, H2O, or air. As illustrated in **Figure 1-a**, the two-step procedure allows to obtain pure products and overcome thermodynamic limitations compared with the conventional co-feed catalytic reforming reaction. The other advantage of looping over conventional reforming is that deposited carbon can be eliminated during reoxidation [2], eliminating the problem of catalyst deactivation.

This project aims to develop an active, selective, and stable oxygen carrier for CL-MR. In particular, we explore perovskite-based materials, as they exhibit high oxygen mobility, can be tailored easily, possess strong mechanical properties, and offer long-term redox stability [3].

The material synthesis is primarily done by complexation method (Sol-Gel) and characterization by XRD, N2 physisorption, XPS, Raman spectroscopy, SEM, TEM, and EPR. The reducibility of the synthesized catalyst was examined using a CH4 Temperature Programmed Reduction (CH4-TPR) setup equipped with mass spectrometry. Subsequently, the material's performance was evaluated in a fixed-bed reactor for chemical looping Dry Reforming of CH4 (CL-DRM). Although they are not particularly active in co-feed methane reforming, lanthanum-based perovskites, specifically ferrites, seem promising candidates for chemical looping methane reforming (CL-MR) [4].

Focusing on LaFeO3 as the base compound, substitutions were considered to increase lattice oxygen mobility. Indeed, doping with aliovalent cations like Sr2+ can create oxygen vacancies, ultimately activating lattice oxygen. Also, previous research at our laboratory has shown that Ni-Ce and Co-Ce interaction in Ni/CeO2 and Co/CeO2 plays an essential role in oxygen mobility [2]. Based on these observations, we synthesized derived iron-based perovskites such as La0.9Sr0.1FeO3-δ and La0.95Ce0.05Fe0.85Ni0.05Co0.05Cu0.05O3-δ. The materials have already been tested for the looping Dry Reforming of CH4 (CL-DRM). La0.95Ce0.05Fe0.85Ni0.05Co0.05Cu0.05O3-δ shows the best activity with an H2/CO ratio of precisely 2 (during 50 cycles), the ideal value in the chemical looping CH4 reforming confirming a low carbon deposition in reductant step and absence of significant deactivation. These results highlight the role of oxygen mobility in the CL-DRM process and open the path to further optimization, mainly to lower the reaction temperature as CH4-TPR suggests for doped samples Figure 1-b.

Engineering Chemistry Research, 2011, vol. 50,

^[1] X. Zhu et al., *Energy Environ Sci*, 2020, **13**, 772–804.

^[2] A. Löfberg et al, *Appl Catal B*, 2017, **212**, 159–174.

^[3] S. Royer et al., *Chem. Rev.*, 2014, **114**, 10292–10368.
[4] O. Mihai et al., in *Industrial and*

pp. 2613–262.

Influence des voies de préparation des oxydes mixtes NiMgAl sur leurs activités catalytiques en méthanation du CO₂

<u>Michel Obeid</u> 1, 2, 3, <u>@</u>, Christophe Poupin, Samer Aouad, Madona Labaki, Josefine Schnee, Eric Gaigneaux, Edmond Abi Aad, François Delattre, <u>@</u>

 Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) Université du Littoral Côte d'Opale : UR4492
 Site de Dunkerque: 145-189 A, Avenue Maurice Schumann 59140 Dunkerque - France
 Laboratoire de Chimie-Physique des matériaux (LCPM) Université Libanaise, Faculté des Sciences, Fanar, Liban - Liban
 Département de Chimie, Faculté des Arts et des Sciences, Université de Balamand

Le dioxyde de carbone est utilisé dans plusieurs applications industrielles que l'on peut classer en trois grands types de valorisation : la valorisation sans transformation du CO2, la valorisation biologique et la valorisation chimique du CO2. Les chercheurs misent surtout sur la valorisation chimique et plus particulièrement sur la production de produits à valeur énergétique, comme le méthane. Outre sa valeur énergétique élevée, le méthane peut être injecté dans le réseau de gaz naturel et être directement utilisé comme carburant [1]. En fait, la réaction de méthanation du CO2 (Eq. 1) est thermodynamiquement possible dans une gamme pratique de conditions (1 atm, 298 K), cependant elle est cinétiquement lente.

 $CO2 + 4 H2 \rightarrow CH4 + 2 H2O \Delta H298 = -165 kJ.mol-1 (Eq. 1).$

Un catalyseur efficace augmentera la vitesse de la réaction de méthanation dans la plage de température considérée (200-400 °C). Les catalyseurs au nickel sont largement utilisés pour la méthanation en raison de leur activité catalytique élevée et de leur faible coût [1]. Comme l'un des réactifs (CO2) est acide, il est important de choisir un support basique tel que le MgO pour en capturer une plus grande partie. De plus, l'alumine est connue pour sa stabilité thermique et sa surface spécifique élevée. La combinaison de la phase active Ni, MgO et de Al2O3 dans une structure bien définie est une bonne solution pour éviter l'agrégation du nickel métallique suite à la réaction exothermique de méthanation et qui permet d'obtenir un catalyseur stable.

La co-précipitation (Cp), la co-précipitation assistée par ultrasons (Us) et l'imprégnation en excès de solvant (Imp) ont été utilisées pour synthétiser nos catalyseurs. Tout d'abord, les hydroxydes doubles lamellaires (HDL) NiMgAl et MgAl à base de Ni (II), Mg (II) et Al (III) ont été préparés par Cp, comme décrit dans des études antérieures [2]. Deuxièmement, en ce qui concerne la méthode Us, les mêmes étapes de préparation ont été suivies, avec l'utilisation d'irradiations ultrasonores lors de la phase de maturation (30 min, 200 W.L-1, 22 kHz, mode d'impulsion de 30 s on, 30 s off) au lieu d'une maturation de 18 h sous agitation [3]. Troisièmement, la méthode Imp est utilisée pour imprégner Ni sur les oxydes mixtes MgAl. Il convient de noter que dans nos préparations, nous avons utilisé une teneur massique de 10% en Ni. Les techniques ICP, DRX, ATD/TG, RTP-H2, physisorption de N2, MET, HRMET et DTP-CO2 ont été utilisées pour caractériser les catalyseurs.

L'oxyde mixte NiMgAl préparé par Us (NiMgAl Us) a montré la meilleure conversion de CO2 (tableau 1), sans aucune désactivation pendant 100 heures sous flux. Tous ces catalyseurs sont hautement sélectifs en méthane (>99,8%). Ceci suggère que NiMgAl Us offre un grand potentiel pour une application industrielle car non seulement le temps de synthèse est considérablement réduit mais également l'activité catalytique est augmentée. La présentation démontrera par les différentes caractérisations physicochimiques comment les Us ont permis cette amélioration de l'activité catalytique.

Tableau 1. Résultats catalytiques des matériaux réduits

Catalyseur	Conversion de CO ₂ (%) à
	350 °C
NiMgAl Cp	60
NiMgAI Us	80
NiMgAl Imp	35

[1] H.L. Huynh, Z. Yu, Energy Technol., 5, (2020), 1901475.

^[2] C. Tanios, S. Bsaibes, C. Gennequin, M. Labaki, F. Cazier, S. Billet, H.L. Tidahy, B. Nsouli, A. Aboukaïs, E. Abi-Aad,

Int. J. Hydrogen Energy, 42, (2017), 12818.

^[3] M. V. Bukhtiyarova, J. Solid State Chem. 269, (2019), 494.

The road to new SOFC electrode materials by studying novel BaTiO₃derived samples

<u>Valerie Theuns</u>¹, Donovan Ledru², Marie-Hélène Chambrier², Aurélie Rolle¹, Anne-Sophie Mamede¹, Héloïse Tissot¹, Elise Berrier¹

¹Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

²Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-62300 Lens, France

One of the current challenges in solid oxide fuel cell (SOFC) development is limiting the use of critical raw materials (CRMs) in electrode materials while retaining suitable electrochemical activity and ionic conduction. BaTiO₃-derived perovskites are a starting point in the search for low-CRM materials. By applying a modification strategy, consisting of partially substituting the A-site cations (Ba²⁺) and/or B-site ones (Ti⁴⁺), by preparing A-site deficient materials or adding trace-amounts of dopants, we hope to achieve higher redox and ionic mobility activity. Upon varying the ionic radii, the formal charge or the A/B ratio, we expect to generate structural disorders, such as ionic vacancies within the matrix or the ex-solvation of a crystal phase. For the BTO-derived samples, the focus was put on Ca²⁺ and Fe³⁺ ion substitution of the A- and B-sites respectively, leading to the BCTF class of perovskite. Ca²⁺ dopants can stabilize the tetragonal phase of BTO and including Fe³⁺ adds redox functions while inducing a charge-induced strain as compared to pure BTO [1]. The present work targets a comprehensive investigation of a BCTF series, for an in-depth understanding of the structural dynamics and surface composition under redox cycling. This will additionally drive the optimization of novel perovskite materials forward.

The BCTF series was prepared with the conventional ceramic method, with $BaTiO_3$, $CaTiO_3$ and Fe_2O_3 (hematite) as oxide precursors. Such mixture was calcined at high temperatures up to 1550°C for 8-24 hours, to ensure decomposition, solid-solid ion diffusion and complete conversion of the oxide phases. Eleven different samples were produced, with the basic formula of $BaxCa_{1-x}Ti_yFe_{1-y}O_3$. In situ Raman spectroscopy was run with an environmental cell (Harrick Scientific) and a HR800 Horiba spectrometer equipped with several possible excitation wavelengths of 633, 532 or 457nm, in addition to SSA, TGA-DSC, TPR-TPO, XRD, and XPS analyses.

All BCTF samples showed low SSA values of less than 1 m²/g. XRD and Raman measurements, with the addition of XPS, revealed ex-solved crystalline phases in some samples. An in-depth analysis of activity was performed on $Ba_{0.85}Ca_{0.15}Ti_{0.80}Fe_{0.20}O_3$, as it appeared homogeneous at the sub-micro scale (10-100 nm) in prior characterisations and because its reducibility was proven by TPR, making it suitable for O₂ reduction. Both TPR and the in-situ Raman spectra collected upon H₂/O₂ cycling of this sample are presented in Fig. 1. When comparing the in-situ Raman spectra during H₂-TPR, the sample has undergone spectral modifications, which are not only due to the structural changes induced by heating. There is a shift

to lower frequencies and a decrease in the intensity of the peak at 505 cm⁻¹ and an increase in the intensity of the peak at 723 cm⁻¹. After O_2 -TPO of the as-reduced sample, the Raman spectrum of the starting material is recovered, indicating that the sample can be regenerated upon redox cycling.

Looking at the TPR-TPO profiles, both the reducibility and the oxidation of the prereduced sample remain quantitatively limited. Still, the TPR curve shows a clear reduction

peak around 650°C. This trend is clearly related to the iron content, as the TPR of the Fe-free counterpart was clear of such a well-defined reduction peak. This means that the reducibility observed is either directly or indirectly related to the presence of Fe cations. This aspect will be documented and discussed in details on the basis of an ensemble of complementary techniques.

In conclusion, when combining the different results, it becomes possible to better depict and further improve the performances of potential SOFC electrode material.

[1] Preeti Redhu, (...) and Preeti Sharma, Ceramics International 2020, 17495-17507

Distribution of Pd on shaped metal oxides and its effect on the catalytic

performance for the CO₂ methanation reaction

Zafeiria Fragkou Topaloglou¹, Mathilde Guilpain², Damien Bourgeois³, Jean-Philippe Dacquin¹, Sébastien Royer¹

¹Unité de Catalyse et Chimie du Solide (UCCS) – UMR CNRS 8181, Université de Lille, Centrale Lille, Université d'Artois, F-59000 Lille, France

²Orano-CORP/IRD, Direction Innovation et R&D, F-92320 Châtillon, France

³Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier BP 17171, Marcoule, 30207 Bagnols-sur-Cèze, France

The use of decarbonated energy sources, targeting on the limitation of CO_2 emissions, introduces the problem of fluctuating energy production [1]. Power to Gas (PtG) technology can be applied to overcome this issue, utilising the surplus of generated electricity for the production of "green" hydrogen through water electrolysis. However, the storage of hydrogen is still problematic, hence it is commonly converted to other energy carriers. One such process is the CO_2 methanation reaction, resulting in synthetic natural gas that can be distributed by the existing infrastructure. Catalysts are necessary for the CO_2 methanation due to kinetic limitations, but the thermal activation of the reactants, along with the exothermicity of the reaction can lead to fast deactivation. Supported catalysts are thus preferable, for their high thermal stability alongside a good metal dispersion [2]. While millimeter-sized supports are dominant in the industry, scarce information is available on the preparation of such catalysts and the effect of the metal distribution on their performance. This work aims at the preparation of supported catalysts on shaped materials with controlled metal distribution and the evaluation of their performance and stability for the CO_2 methanation.

Two series of catalysts with 1 wt. % target Pd loading were prepared, supported on commercial alumina or silica via the incipient wetness impregnation method. It can be macroscopically observed (Fig. 1) that, depending on the nature of the support (SiO₂, vs. Al₂O₃), homogeneous distribution of Pd throughout the support grain is complex. For alumina-based catalysts, controlling the acidic character of the impregnating solution is critical for the metal distribution within the pellet

Figure 1. Macroscopic overview of calcined Pd catalysts supported on Al_2O_3 (top) or SiO_2 (bottom), prepared with an impregnating solution of increasing acidity.

body. Varying the impregnating conditions does not seem to affect the textural properties of the materials until a certain acidity. Regarding the silica-supported catalysts, the metal dispersion (as determined by H_2 chemisorption) is notably improved under impregnation in high acidity conditions, albeit no obvious macroscopic effect was observed throughout the samples (Fig. 1). For alumina, the acidity impacts negatively the particle size and metal dispersion, even though the macroscopic homogeneity is enhanced. It becomes apparent that good metal dispersion is not necessarily synonymous to uniform distribution throughout the grain, thus the current study is focusing on the interaction of the metal ion in solution with the shaped supports and the effect on the properties of the catalysts. Following appropriate activation, the catalytic performance of structured Pd catalysts has been investigated and results regarding the CO₂ methanation reaction will be discussed.

[1] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Fuel 166 (2016) 276-296.

[2] A. C. Bueno, M. Mayer, M. Weber, M. Bechelany, M. Klotz, D. Farruseng, Catalysts 9 (2019) 577.

Catalyseurs à base de vanadium pour la dépolymérisation sélective de

la lignine en synthons aromatiques

Elias EL RASSI^{1,2}, Sébastien ROYER¹, Abdellatif BARAKAT², Jérémy DHAINAUT¹, Abderrahim SOLHY²

¹ Unité de Catalyse et Chimie du Solide – UCCS – UMR 8181, Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, F-59000 Lille, France.

² Institut National de la Recherche Agronomique et de l'Environnement – INRAE – UMR IATE, Université de Montpellier, F-34000, France

La dépolymérisation de la lignine, un composant majeur, stable et complexe de la biomasse lignocellulosique, reste un défi incontournable pour la chimie verte. plus spécifiquement pour la production des produits chimiques ainsi que la production du bio-fuel. Les polyoxométallates silicotungstiques substitués au vanadium ont montré une forte activité et stabilité catalytique lorsqu'ils ont été utilisés pour la dépolymérisation de la lignine pour la production de molécules à forte valeur ajoutée. Cette amélioration des activités catalytiques peut être liée au vanadium sous ses formes V4+ et V5+ présentant un fort potentiel redox [1], [2]. Les pérovskites présentent également une activité importante pour la conversion de la lignine en synthons aromatiques [3], [4]. Par exemple, Zhang et al. [5] ont testé LaFe_{1-x}Cu_xO_{3-δ}, et leurs travaux ont montré une conversion de 66,6% en molécule aromatiques dont 4,56% de la vanilline et 11,51% de syringaldehyde sous une température de 120°C et une pression totale 20 bar. La structure cristalline des pérovskites et leurs propriétés remarguables catalytiques offrent donc une alternative durable et efficace aux catalyseurs conventionnels.

Figure 1 : (a) MEB de La-V-O réduit à 900°C et **(b)** diffractogrammes de RX de LaVOx avant (trait plein) et après (pointillés) réduction.

Dans cette étude nous nous sommes intéressés aux pérovskites à base de vanadium pour la dépolymérisation de la lignine. Les pérovskites ont été élaborées par complexation à l'acide citrique, puis réduction afin de former la structure LaVO₃. Les échantillons synthétisés ont été caractérisés par ICP, DRX, N₂-physisoprtion, RPE, MEB-MET. Un exemple de cliché de Microscopie Electronique à Balayage (MEB) est présenté **Figure 1-a**. Les échantillons se présentent sous la forme d'agrégats compact de nanoparticules, et présentent des surfaces spécifiques faibles (< 10 m².g⁻¹). La présence de Fe dans la structure cristalline (en substitution de V) permet une amélioration notable de la réductibilité du matériau. Les analyses par Diffraction de Rayons X (DRX) (**Figure 1-b**) montrent que les phases pérovskites ne sont pas obtenues après calcination, mais une réduction ultérieure est nécessaire. L'activité catalytique de ces catalyseurs est étudiée pour la conversion oxydante de l'eugénol en réacteur batch, comme molécule modèle représentative de la lignine. La stabilité des phases pérovskites sera étudiée par le biais de tests de recyclabilité.

- [1] X. Du, A. W. Tricker, W. Yang, R. Katahira, W. Liu, T. T. Kwok, P. Gogoi, and Y. Deng, *ACS Sustain. Chem. Eng.*, vol. 9, no. 23 (2021), pp. 7719–7727.
- [2] L. Hdidou, K. Khallouk, A. Solhy, B. Manoun, A. Oukarroum, and A. Barakat, *Catal. Sci. Technol.*, vol. 8, no. 21 (2018), pp. 5445–5453.
- [3] C. Cabral Almada, A. Kazachenko, P. Fongarland, D. Da Silva Perez, B. N. Kuznetsov, and L. Djakovitch, *Catalysts*, vol. 11, no. 4 (2021), p. 467.
- [4] A. Kumar, B. Biswas, R. Kaur, B. B. Krishna, and T. Bhaskar, *Bioresour. Technol.*, vol. 342, no. August (2021), p. 126016.
- [5] J. Zhang, H. Deng, and L. Lin, *Molecules*, vol. 14, no. 8 (2009), pp. 2747–2757.

Pérovskite à base de manganèse pour l'oxydation catalytique de

polluants (CO, COV...)

<u>C.E. Bounoukta</u>¹, E. Genty¹, C. Poupin¹, C. Ciotonea¹, F. Cazier², G. Leyssens³, V. Tschamber³, S. Siffert¹, S. Royer⁴, R. Cousin¹

¹: Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côté d'Opale, MREI1—145 Avenue Maurice Schumann, 59140 Dunkerque, France.

² : Centre Commun de Mesures, Université du Littoral Côté d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France.

³ : Laboratoire Gestion Risques Environnement - Université de Haute-Alsace, 3b rue A. Werner, 68093 Mulhouse Cedex, France.

⁴: Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000 Lille, France.

L'utilisation de la biomasse comme une source énergétique est considérée comme une option technologique pour atteindre les objectifs de neutralité de carbone [1]. Cependant, les rejets issus de la combustion de cette biomasse peuvent contenir des polluants gazeux organiques comme les composés organiques volatils (COV), les Hydrocarbures Aromatiques Polycycliques (HAP) mais également du CO et des NOx. Une solution pour diminuer ces émissions est l'oxydation catalytique totale en CO_2 et H_2O [2]. Des matériaux à base d'oxydes mixtes (Mn, Co,...) présentent des performances intéressantes par rapport aux catalyseurs à base de métaux nobles pour les réactions d'oxydation totale du CO et des COV.

L'utilisation d'oxydes mixtes avec une structure pérovskite ABO₃ est largement étudiée pour ce type de réaction [3]. Ces matériaux présentent des propriétés de surface intéressantes de par la modulabilité de la structure avec l'utilisation de différents cations pour les réactions chimiques d'intérêt. Ces matériaux présentent une stabilité chimique élevée ainsi que des propriétés rédox intéressantes. De plus, le remplacement partiel des sites A et/ou B peut entrainer des défauts dans la structure ce qui peut conduire à la formation de défauts d'oxygène. Ceux-ci permettent d'améliorer les propriétés catalytiques de ces matériaux [4].

L'objectif de ce travail consiste à développer des catalyseurs à base de manganèse Mn avec

une structure pérovskite de formule La_{0.8}A'_{0.2}MnO_{3.} Une partie du lanthane situé dans les sites A a été substituée par des métaux alcalins (A' = Na⁺ ou K⁺) ou alcalino-terreux (Ca²⁺, Ba²⁺, Sr²⁺ ou Mg²⁺). La caractérisation physico-chimique des matériaux (physisorption d'azote, H₂-RTP, DRX) a été effectuée. Les matériaux synthétisés ont ensuite été testés pour l'oxydation du CO (1000ppm dans l'air).

Les courbes de conversion du CO en CO₂ sont présentées sur la Figure 1. La substitution du La par un autre élément permet d'améliorer la performance catalytique. Ainsi, la substitution du La par le Mg a permis d'obtenir le catalyseur présentant les meilleures performances.

Figure 1 : Courbes de conversion du CO sur les pérovskites La_{0.8}A'_{0.2}MnO₃.

Références bibliographiques :

[1] S. Ozgen, S. Cernuschi, S. Caserini, Renewable and Sustainable Energy Reviews. 135 (2021) 110113.

[2] D. Maxwell, B.A. Gudka, J.M. Jones, A. Williams, Fuel Processing Technology. 199 (2020) 106266.

[3] F. Polo-Garzon, Z. Wu, J. Mater. Chem. A. 6 (2018) 2877–2894.

[4] M. Zang, C. Zhao, Y. Wang, S. Chen, Journal of Saudi Chemical Society. 23 (2019) 645–654.

Valorization of waste biomass flows for preparation of

novel biosourced CO₂ sorbents

<u>Aliénor Beuchat</u>¹, Murad Malikzade¹, Ksenia Parkhomenko¹, Claire Courson¹, Dominique Begin¹, Marine Guilmont², Benedicte Rety², Zakaria Nadif², Roger Gadiou², Nicolas Thevenin³, Lionel Ruidavets³

¹Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg, Strasbourg, France

²Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université Haute-Alsace, Mulhouse, France

³*RITTMO Agroenvironnement*®, *Colmar, France*

CO₂ is considered as the major contributor to greenhouse gas emissions and the main driver of climate change [1]. It is essential to develop sustainable ways for CO_2 reduction and capture to mitigate climate change. Biochars can be used as an effective CO₂ sorbents and a promising alternative to replace conventional activated carbon. Currently, many investigations have been conducted to improve the physical and chemical properties of raw biochars using physical and chemical processes in order to produce modified biochar [2], which can be of great help in improving the sorption capacity. In this project, the preparation and activation of biochars from biomasses of different types - lignocellulose (grape pomace, wood) and sewage sludge - were investigated. The biochars were prepared by slow co-pyrolysis: wood mixed with sewage sludge and grape pomace mixed with sewage sludge, in different proportions. The pyrolysis yields of biochars were determined smaller for wood/sludge biochars (22-30%) comparing to grape pomace/sludge biochar yields (31-35%). The single biochars were also prepared and analyzed. They were analyzed and elemental analysis revealed the content of iron (by XRF) was equal to 5,1mass% in wood/sludge biochar and 4,2mass% in grape marc/sludge biochar, other elements were also present as Si, Al, Ca, K, Mg, P, Na. The detailed analysis of the structure, morphology, and chemical composition will be presented. The CO₂ sorption capacity of different biochars is shown in Table 1. The activation by steam had a positive effect. Even though chemically activated carbons could have much higher SSA, the CO₂ sorption capacity could be superior for modified biochars with presence of heteroatoms.

Sample	SSA,	Ashes, %	CO ₂ sorption	Ref.			
	m²/g		capacity, mmol/g				
Wood + sewage sludge	221	38,3	0,86	This work			
Wood + sewage sludge activated	475		1,0	This work			
Grape pomace + sludge	46	40,9	1,04	This work			
Grape pomace + sludge activated	261		1,74	This work			
N-modified carbon activated by CO ₂	1674		1,98	[4]			
Fir wood activated by KOH	2794		1,54	[5]			
Zeolite	355		1,03	[6]			

 Table 1. Comparison of CO₂ sorption capacity of biochars.

The most interesting results were not only the important CO_2 sorption capacity of the composite biochars but also their outstanding stability in multiple cycles of storage and release of CO_2 , these results will be shown and discussed in comparison to other well-known CO_2 sorbents. The composite biochars are physically (steam) activated to make up the micro-mesoporous structure and higher specific surface areas for further applications. Therefore, they can be used as a sorbent, catalyst support, or energy storage material in various industries [3]. In this work the CO_2 sorption capacity was studied.

- [1] Yu, K.M., Curcic, I., Gabriel, J., Tsang, S.C. ChemSusChem 1, 2008, 893-899
- [2] Mian, M. M., & Liu, G. Chemical Eng. J., 392, 2020, 123681
- [3] W. Zhao, V. Fierro, C. Zlotea, E. Aylon and A. Celzard, Int. J. Hydrogen Energy 36, 2011, 5431
- [4] Weigang Zhao, Lu Luo, Mizi Fan. Nano 12, 2017, 1750007
- [5] F.-C. Wu, R.-L. Tseng, R.-S. Juang. Sep. Purif. Technol. 47, 2005,10-19
- [6] Megías-Sayago C., Bingre R., Huang L., Lutzweiler G., Wang Q., Louis B. Frontiers in Chem. 7 2019

Stockage d'hydrogène dans des diols biosourçables

Valérie Meille,¹ Elias Al-Ahmar¹, Augustin Manel², Étienne Airiau², Catherine Pinel¹

¹*IRCELYON, CNRS/UCBL, 2, av. A. Einstein, 69100, Villeurbanne, France.* ²*Activation, 10, rue Jacquard, 69680 CHASSIEU, France*

L'utilisation des liquides organiques (LOHC) est une option prometteuse pour le stockage d'hydrogène longue durée ou son transport sur de longues distances, grâce à l'utilisation de molécules stables et peu volatiles. Les molécules les plus étudiées sont issues du raffinage pétrolier (cycloalcanes), à partir desquelles une déshydrogénation catalytique permet de restituer l'hydrogène moléculaire à la demande. Les inconvénients majeurs de ce système sont 1) l'emploi de catalyseurs à base de métaux nobles, 2) la nécessité d'opérer à haute température (> 300 °C), 3) l'utilisation de LOHC pétro-sourcés. Une idée faisant l'objet d'un brevet récent semble permettre de pallier les 3 inconvénients [1]. Il s'agit d'utiliser des diols tels que le 2,3-butanediol (2,3-BDO) ou le 1,2-propanediol (1,2-PDO), 2 molécules bio-sourçables [2,3], comme nouveaux LOHC.

Grâce à l'écart de température d'ébullition entre réactifs et produits (Figure 1), il est possible de réaliser la déshydrogénation à une

température comprise entre bp₂ (145 °C pour l'hydroxyacétone) et bp₁ (188 °C pour le 1,2-propanediol). Ainsi, seul le réactif est en phase liquide et les produits de la réaction sont entraînés dans la phase gaz avec l'hydrogène produit. L'équilibre de la réaction est ainsi déplacé et la réaction reste favorable à

modérée

température

ble à Figure 1: Déshydrogénation du diol (R=H ou R=CH₃) (environ

170 °C), en utilisant des catalyseurs à base de cuivre, sans métal noble.

Dans un premier temps, la réaction a été réalisée dans un réacteur de 25 mL équipé d'un dispositif de reflux standard, avec le diol pur et un catalyseur CuZn commercial en poudre. Le débit d'hydrogène obtenu est de l'ordre de 20-60mL/min/g_{cat} après stabilisation de l'activité catalytique (13h) pour la déshydrogénation du 1,2-PDO et du 2,3-BDO. L'hydroxycétone est le principal produit, certains sous-produits indésirables étant formés en parallèle. Ces composés de poids moléculaire élevé sont dus à la condensation de l'hydroxycétone au sein du réacteur. Les expériences de mise à l'échelle en phase liquide (x 100) ont confirmé une productivité d'hydrogène d'environ 30mL/min/g_{cat}, mais ont révélé un problème de sélectivité, avec la présence de jusqu'à 50 % de ces produits de condensation. Pour limiter la formation de ces sous-produits, des expériences conduites en phase gaz dans un réacteur continu ont montré une sélectivité de 94% (hydroxycétone + dicétone) à partir du 2,3-BDO, avec une productivité d'hydrogène d'environ 30mL/min/g_{cat}, mais à une température de 270 °C. Ce résultat reste prometteur puisque la productivité est similaire à celle obtenue avec un LOHC standard mais un catalyseur à base de platine.

Cette étude a été financée par la société HYJALIS que nous remercions.

[1] J. Alagy, P. Trambouze, Brevet WO2020141282A1 (2020).

[2] Y. Amada, H. Watanabe, Y. Hirai, Y. Kajikawa, Y. Nakagawa, K Tomishige, ChemSusChem 5 (2012) 1991-1999.

[3] T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige, Applied Catalysis A 329 (2007) 30-35.

Effect of bifunctional catalysts in enhancing the stability of bio-oil

during pyrolysis under H₂ atmospheric pressure

<u>Katy Nespoulous</u>,¹ William De Rezende Locatel¹, Chetna Mohabeer¹, Nuno Batalha¹, Dorothée Laurenti¹, Nolven Guilhaume¹, Yves Schuurman¹

¹Institut de recherches sur la catalyse et l'environnement, CNRS, Université Claude Bernard Lyon 1, 69626 Villeurbanne, France.

Wood pyrolysis is a promising alternative for producing renewable energy and fuels¹. Certain problematic compounds present in pyrolysis oil, specifically carboxylic acids, oligomeric phenols, and sugar compounds, induce undesirable properties, such as high acidity, corrosion, viscosity, and composition instability, to the crude oil², compromising its use. This study explores the neutralization of those compounds by adding hydrogen in the catalytic pyrolysis of beechwood (lignocellulosic biomass) under atmospheric pressure and in presence of hydrogenating catalysts, e.g., Pt/TiO₂, Ni/Al₂O₃ and an acid zeolite H-ZSM5. The bifunctional catalyst Pt/TiO₂+H-ZSM5 has shown significant results regarding acid groups reduction, supported by several characterization analyses.

Materials and Methods

Pt/TiO₂ catalyst (2 wt% Pt) was prepared by incipient wetness impregnation, drying, and calcination at 600°C for 4h. Commercial HZSM-5 (Si/AI = 45), silicalite, and Ni/Al₂O₃ (20 wt% Ni) were also used as catalysts. The catalytic pyrolysis was performed at 500°C, atmospheric pressure, with 2g of each catalyst. Total gas flow rate is 330mL/min, with H₂ partial pressure at 15%. The experiment lasted 2h, with dried beechwood chips supplied during the first hour (0.05g/10sec, 20g in total). The mass balance is verified by comparing the initial wood mass introduced and the weight difference for each process equipment before and after the experiment. Experiments have been performed independently without a catalyst and with each catalyst. Finally, experiments were also performed without hydrogen (inert atmosphere). The bio-oil products were characterized by GC/MS, ¹³C-NMR, CHNS-O, Karl-Fischer, and TAN.

Results and Discussion

The acidity of the crude oils, measured as TAN, was chosen as a simple indicator for the quality of the bio-oils obtained from this process. As shown in Figure 1, simply using a metallic catalyst, like Pt/TiO₂ and Ni/Al₂O₃, has a negligible effect on the bio-oil quality despite the presence of H₂. Indeed, the HZSM-5+TiO₂ mixture, both materials incapable of activating H₂, yielded a bio-oil with lower acidity (56 mgKOH/g). Yet, when **Pt/TiO₂ is placed in the presence of H-ZSM5** an even more **significant reduction of the TAN** was observed (29 mg KOH/g), indicating a synergy to occur when Pt/TiO₂ and H-ZSM5 are present. Furthermore, this synergy is lost when there is no H₂. On the other hand, when H-ZSM5 was replaced by silicalite, which has an identical structure (MFI) but no acid sites (pure Si zeolite) the TAN was even higher than that of pure Pt/TiO₂, suggesting the acid sites in H-ZSM5 to be essential for improving the quality of the crude oil.

The results obtained in this study show that through the **combination of acid and metallic catalysts**, it is possible to significantly improve the quality of bio-oil by performing the reaction in the presence of hydrogen, even at low pressure. The results suggest a bifunctional mechanism to occur when both catalysts are present. The contribution will present the complete analysis of the bio-oil and aqueous phase, further supporting these observations.

[1]. Mohan, D., Pittman Jr, C. U., & Steele, P. H. (2006). Energy & fuels, 20(3), 848-889.
[2] Venderbosch, R. H. (2015). ChemSusChem, 8(8), 1306-1316

Figure 1 : Total acid number of the bio-oil

Funded by the European Union This project has received funding from the European Union (WASTE2ROAD project – Grant Agreement No. 818120) and (REFOLUTION project – Grant Agreement No. 101096780)

Etude statistique de la cinétique de transformation du glucose issu de

la biomasse en glycols.

Marie-Line ZANOTA¹, Isaline BONNIN¹, Franck RATABOUL², Noémie PERRET², Léa VILCOCQ¹

¹CP2M, CPE Lyon, CNRS, Université Claude Bernard Lyon 1, 43 Bd du 11 Nov. 1918, 69616, Villeurbanne, France.

²IRCELYON, CNRS, Université Claude Bernard Lyon 1, 2 av. Albert Einstein, 69626, Villeurbanne, France.

Dans le cadre de la stratégie de développement durable, le déploiement de bioraffineries et le développement de nouvelles voies chimiques de production sont en plein essor. L'objectif est de pouvoir transformer des produits à faible valeur ajoutée, comme les déchets agricoles ou forestiers, en produits à forte valeur ajoutée utilisables pour la chimie fine. Mais l'utilisation de matière organique végétale pour en extraire des molécules d'intérêt implique de travailler avec des mélanges de composés complexes. L'étude de la réactivité de ces mélanges ainsi que la connaissance de la cinétique des différentes réactions mises en jeu sont un vrai challenge.

Dans ce projet, nous nous sommes concentrés sur la production de glycol (Éthylène glycol (EG) et propylène glycol (PG)) largement utilisés dans l'industrie des polymères. A partir de glucose, produit d'hydrolyse de la cellulose, deux réactions successives sont nécessaires pour obtenir les glycols EG et PG : rétro-aldolisation du sucre (RAC), et hydrogénation des intermédiaires. Mais le schéma réactionnel fait intervenir beaucoup de réactions parallèles à effet domino, diminuant la sélectivité dans ces molécules cibles.

Dans le but d'apporter une compréhension de l'ensemble de ces phénomènes, nous avons développé une étude statistique afin de caractériser l'impact des différents paramètres opératoires tels que la température, la pression ou la concentration initiale.

Les données expérimentales ont été obtenues en réacteur batch en présence d'un catalyseur bifonctionnel développé par Goc et al[1], 5%Ni-30%W₂C/AC, constitué de carbure de tungstène (pour la réaction RAC) et de Nickel pour l'hydrogénation. En se basant sur la méthodologie présentée par Frecha[2] et sur les données expérimentales obtenues, nous avons développé un modèle polynomial et analysé la sensibilité aux paramètres opératoires. Une analyse statistique nous a permis de quantifier la significativité des paramètres et d'en déduire les paramètres opératoires ayant le plus d'impact sur la conversion et les rendements obtenus. Nous avons ensuite pu montrer la validation (figure 1a) de notre modèle dans l'ensemble de la gamme opératoire utilisée afin de pouvoir en déduire les conditions optimales correspondant aux résultats visés (figure 1b).

Figure 1 : a) Courbe de parité pour la conversion du glucose. b) Représentation de la surface de conversion et des points expérimentaux.

[1] F. Goc et al., ChemCatChem, 15, (2023), doi: 10.1002/cctc.202201496
[2] E. Frecha et al., Catalysis Today, 423, (2023), doi: 10.1016/j.cattod.2023.01.009

Biochar-based catalysts for methane reforming

<u>Murad Malikzade</u>¹, Ksenia Parkhomenko¹, Aliénor Beuchat¹, Claire Courson¹, Dominique Begin¹, Marine Guilmont², Benedicte Rety², Zakaria Nadif², Roger Gadiou², Nicolas Thevenin³, Lionel Ruidavets³

¹Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg, Strasbourg, France

²Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université Haute-Alsace, Mulhouse, France

³RITTMO Agroenvironnement®, Colmar, France

This project is focused on the preparation and activation of composite biochars from biomass of two different types - lignocellulose (grape pomace) and sewage sludge. Biomass from a sewage treatment plant contains large quantities of inorganic compounds (ash), including high quantity of Fe (1,6 mass%), mainly from the flocculant widely used in wastewater treatment, other present elements – Si, Al, Ca, K, Mg, P, Na. The waste from wine production (grape pomace) is valorized in the biochars preparation via mixing with sewage sludge in different ratios before the pyrolysis step. Mixed biochars were prepared by copyrolysis using the "slow" and "fast" routes. The aim of this study is the preparation of two families of biosourced catalytic materials naturally loaded with

metals, with improved physico-chemical and morphological properties compared to the oxide surfaces alone. Thus a novel route for valorization of different types of waste is proposed for the preparation of composite biochars. The composite biochars are physically (steam) activated to make up the micro-mesoporous structure and higher specific surface areas for further application. In this work the catalytic activity of composite biochars was tested in two reactions – dry methane reforming and steam methane reforming. Through methane dry reforming, greenhouse gases of CH_4 and CO_2 can be converted into syngas that has a wide application for hydrogen production or synthesis of a variety of valuable chemicals. The use of biochars as catalytic materials in this reaction is helpful

Figure 1 : N_2 adsorption-desorption isotherms (family of slow pyrolysis)

to overcome the mane problematics – heavy coking and active metal sintering. [1, 2] The integration of steam reforming of methane is still limited due to the same problems. [3]

The pyrolysis yields of grape pomace/sludge composite biochars were determined slightly smaller for fast pyrolysis (29,5-30,5%) comparing to yields in slow pyrolysis (30,5-34,6%). The single biochars were also prepared and analyzed. The comparison of nitrogen adsorption isotherms for single grape pomace biochar, composite biochar, activated composite biochar (family of slow pyrolysis) is shown in Figure 1, the consequent rise in the specific surface area is noticeable. The elemental analysis revealed the content of iron (by XRF) equal to 4,2mass% in the composite, the amount that exhibit catalytic properties. The detailed analysis of the structure, morphology, and chemical composition of the biochars before and after activation will be presented. The composite biochars were tested in the mentioned reactions and their activity will be discussed in details and compared to two industrial catalysts: Ni/Al₂O₃ industrial catalyst for methane conversion as well as Fe/support that is closer to the studied materials with high content of iron.

Novel engineered composite biochars prepared only from waste flows (grape pomace as waste from wine production; sewage sludge – common waste) are proposed as heterogeneous catalysts.

- [1] Longzhi Li, Jian Chen, Sheng Wang, Yongdong Tan, Bo Meng, Guifu Zou, Fumao Wang, Zhanlong Song, Chunyuan Ma, Journal of Cleaner Production, 237, 2019, 117838
- [2] Qing-ming CHEN, Da-wei LIU, Sui-ming LÜ, Wei-xiang ZHANG, Qing-peng ZHAO, Ning ZHANG, Long XU, Xiao-xun MA, Journal of Fuel Chemistry and Technology, 51, 2023, 273-293
- [3] Jie Ren, Yi-Ling Liu. ACS Sustainable Chem. Eng. 2021, 9, 33, 11212–11222